Environmental Engineering Reference
In-Depth Information
u
(
t
1
)
u 2
T
u
ϕ
(
t
,
μ
)=[
y
(
t
1
)
y
(
t
2
)
y
(
t
3
)
u
(
t
1
)
(
t
1
)
l
(
t
)]
b 5
(
t
1
)
(4.49)
so ϕ
depends on parameter b 5 . Then this is a NLIP (nonlinear in the parame-
ters) model and, in general, a NARX model [1].
(
t
,
μ
)
(
,
)
Example 4. In the case of the single layer perceptron ϕ k
t
μ k
contains parameters
(weights) in vector β k , and the bias γ k :
d T β k
ϕ k
=
f
(
+
γ k
),
(4.50)
where f is, e.g. , a sigmoid function (Figure 4.4). This model is NLIP.
4.2.2.1 Optimal Parameter Vector
The optimal parameter vector is obtained through minimization of functional (4.2)
using the necessary condition (4.7)
(
|
,
ˆ κ
)
y
t
t
1
E
{[
y
(
t
)−
y
(
t
|
t
1
,
ˆκ
)]
} =
0
.
(4.51)
∂κ
From (4.7)
m
k = 1
∂θ k ϕ k
ˆ κ
y
(
t
|
t
1
,
)
(
ξ
(
t
),
ˆμ k
)
=
.
(4.52)
∂κ
ˆ κ
For LIP models ( e.g. , ARX, NARX),
m
k = 1
θ
θ k ϕ k
θ
ϕ T
ˆ κ
y
(
t
|
t
1
,
)=
y
(
t
|
t
1
,
)=
(
t
)=
(
t
)
(4.53)
and
ˆ κ
ˆ κ
y
(
t
|
t
1
,
)
y
(
t
|
t
1
,
)
ϕ T
=
=
(
t
),
(4.54)
∂θ
∂κ
since no parameters appear in ϕ
(
t
)
.
From (4.7), (4.53) and (4.54)
ϕ T
θ
ϕ T
ϕ T
ϕ T
ˆ θϕ T
E
{[
y
(
t
)−
(
t
)
]
(
t
)} =
0
,
E
{
(
t
)
y
(
t
)} =
E
{
(
t
)
(
t
)},
(4.55)
θ
θ
ϕ T
ϕ T
)}
1 E
E
{
ϕ
(
t
)
y
(
t
)} =
E
{
ϕ
(
t
)
(
t
)}
,
=
E
{
ϕ
(
t
)
(
t
{
ϕ
(
t
)
y
(
t
)}.
(4.56)
Assuming ϕ
is a wide sense stationary stochastic vector, i.e. , its elements are
stochastic processes (random sequences) [47], the correlation matrices in (4.56) are
independent of time t and may be written
(
t
)
ϕϕ T
R ϕϕ
=
E
{
},
R ϕ y
=
E
{
ϕ y
}.
(4.57)
Search WWH ::




Custom Search