Biomedical Engineering Reference
In-Depth Information
143. D. Bazile, C. Prud'homme, M. Bassoullet, M. Marlard, G. Spenlehauer, M.  Veillard,
Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes
system, Journal of Pharmaceutical Sciences 84 493-498.
144. R. Gref, M. Lück, P. Quellec, M. Marchand, E. Dellacherie, S. Harnisch, T. Blunk,
R.H. Müller, 'Stealth' corona-core nanoparticles surface modified by polyeth-
ylene glycol (PEG): Influences of the corona (PEG chain length and surface
density) and of the core composition on phagocytic uptake and plasma protein
adsorption, Colloids and Surfaces B: Biointerfaces 18 (2000) 301-313.
145. K. Furumoto, K. Ogawara, S. Nagayama, Y. Takakura, M. Hashida, K. Higaki,
T.  T. Kimura, Important role of serum proteins associated on the surface of par-
ticles in their hepatic disposition, J. Controlled Release 83 (2002) 89-96.
146. W. Lu, X. Qi, Q. Zhang, R. Li, G. Wang, R. Zhang, S. Wei, A pegylated lipo-
somal platform: Pharmacokinetics, pharmacodynamics, and toxicity in mice
using doxorubicin as a model drug, Journal of Pharmacological Sciences 95 (2004)
381-389.
147. D. Liu, A. Mori, L. Huang, Role of liposome size and RES blockade in control-
ling biodistribution and tumor uptake of GM1-containing liposomes, Biochimica
et Biophysica Acta (BBA) - Biomembranes 1104 (1992) 95-101.
148. T. Cedervall, I. Lynch, S. Lindman, T. Berggård, E. Thulin, H. Nilsson,
K.A. Dawson, S. Linse, Understanding the nanoparticle-protein corona using
methods to quantify exchange rates and affinities of proteins for nanoparticles,
Proceedings of the National Academy of Sciences 104 (2007) 2050-2055.
149. M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall, K.A. Dawson, Nanoparticle
size and surface properties determine the protein corona with possible implica-
tions for biological impacts, Proceedings of the National Academy of Sciences 105
(2008) 14265-14270.
150. S. Li, L. Huang, Pharmacokinetics and biodistribution of nanoparticles,
Molecular Pharmaceutics 5 (2008) 496-504.
151. F.M. Muggia, Doxorubicin-polymer conjugates: Further demonstration of the con-
cept of enhanced permeability and retention, Clinical Cancer Research 5 (1999) 7-8.
152. Y.J. Jun, J.I. Kim, M.J. Jun, Y.S. Sohn, Selective tumor targeting by enhanced per-
meability and retention effect. Synthesis and antitumor activity of polyphosp-
hazene-platinum (II) conjugates, J. Inorg. Biochem. 99 (2005) 1593-1601.
153. K. Greish, Enhanced permeability and retention of macromolecular drugs in
solid tumors: A royal gate for targeted anticancer nanomedicines, J. Drug Target .
15 (2007) 457-464.
154. P. Carmeliet, R.K. Jain, Angiogenesis in cancer and other diseases, Nature 407
(2000) 249-257.
155. W. He, M.S. Ladinsky, K. Huey-Tubman, G.J. Jensen, J.R. McIntosh, P.J.  Bjorkman,
FcRn-mediated antibody transport across epithelial cells revealed by electron
tomography, Nature 455 (2008) 542-546.
156. A.T. Florence, N. Hussain, Transcytosis of nanoparticle and dendrimer delivery
systems: Evolving vistas, Adv. Drug Deliv. Rev. 50 (2001) S69-S89.
157. P. Oh, P. Borgstrom, H. Witkiewicz, Y. Li, B.J. Borgstrom, A. Chrastina, K. Iwata,
K.R. Zinn, R. Baldwin, J.E. Testa, J.E. Schnitzer, Live dynamic imaging of caveo-
lae pumping targeted antibody rapidly and specifically across endothelium in
the lung, Nat Biotech 25 (2007) 327-337.
158. A.I. Minchinton, I.F. Tannock, Drug penetration in solid tumours, Nat Rev Cancer
6 (2006) 583-592.
Search WWH ::




Custom Search