Chemistry Reference
In-Depth Information
[280] Schnecke V, Swanson CA, Getzoff ED, Tainer JA, Kuhn LA. Screening a peptidyl
database for potential ligands to proteins with side-chain flexibility. Proteins: Struct.,
Funct., Bioinf., 1998,33: 74-87.
[281] Jones G, Willett P. Glen RC. Molecular recognition of receptosites using a genetic
algorithm with a description of desolvation. Mol. Biol., 1995, 245: 43-53.
[282] Frauenfelder H, Sligar SG, Wolynes PG. The energy landscapes and motions of proteins.
Science, 1991, 254: 1598-1603.
[283] Teague SJ. Implications of protein flexibility for drug discovery. Nat. Rev. Drug Discov.,
2003, 2: 527-541.
[284] Ahmed A, Kazemi S, Gohlke H, Protein flexibility and mobility in structure-based drug
design. Front. Drug Des. Discov. 2007, 3: 455-476.
[285] Cozzini P, Kellogg GE, Spyrakis, F, Abraham, DJ, Costantino G, Emerson A, Fanelli F,
Gohlke H, Kuhn LA, Morris GM, Orozco M, Pertinhez TA.; Rizzi M, Sotriffer CA. Target
flexibility: an emerging consideration in drug discovery and design. J. Med. Chem., 2008,
51: 6237-6255.
[286] MacRaild CA, Daranas AH, Bronowska A, Homans SW. Global changes in local protein
dynamics reduce the entropic cost of carbohydrate binding in the arabinose-binding protein.
J. Mol. Biol., 2007, 368: 822-832.
[287] Perola E, Charifson PS. Conformational analysis of drug-like molecules bound to proteins:
an extensive study of ligand reorganization upon binding. J. Med. Chem., 2004, 47: 2499-
2510.
[288] Gutteridge A, Thornton J. Conformational changes observed in enzyme crystal structures
upon substrate binding. J. Mol. Biol., 2005, 346: 21-28.
[289] Najmanovich R, Kuttner J, Sobolev V, Edelman M. Side-chain flexibility in proteins upon
ligand binding. Proteins: Struct., Funct. Bioinform., 2000, 39: 261-268.
[290] Mobley DL, Dill KA. Binding of small-molecule ligands to proteins: "what you see" is not
always "what you get". Structure, 2009, 17: 489-498.
[291] Koshland DE. Application of a theory of enzyme specificity to protein synthesis. Proc.
Natl. Acad. Sci. USA, 1958, 44: 98-104.
[292] Rarey M, Kramer B, Lengauer T, Klebe G. A fast flexible docking method using an
incremental construction algorithm. J.Mol. Biol., 1996, 261: 470-489.
[293] Rarey M, Kramer B, Lengauer T. Multiple automatic base selection: protein-ligand docking
based on incremental construction without anual intervention. J. Comput. Aided Mol. Des.,
1997, 11: 369-384.
[294] Ewing TJ, Makino S, Skillman AG, Kuntz ID. DOCK 4.0: search strategies for automated
molecular docking of flexible molecule databases. J. Comput. Aided Mol. Des., 2001, 15:
411-428.
[295] Warren GL, Andrews C W, Capelli AM, Clarke B, LaLonde J, Lambert MH,. Lindvall M,
Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS.
A critical assessment of docking programs and scoring functions. J. Med. Chem., 2006, 49:
5912-5931.
[296] Abagyan R, Totrov M. High-throughput docking for lead generation. Curr. Opin. Chem.
Biol., 2001, 5: 375-382.
[297] Carlson HA, McCammon JA. Accommodating protein flexibility in computational drug
design. Mol. Pharmacol., 2000, 57: 213-218.
Search WWH ::




Custom Search