Chemistry Reference
In-Depth Information
phosphodiesterase inhibitors discovered by co-crystallography and scaffold-based drug
design. Nat Biotechnol 2005, 23:201-207.
[164] Davies DR, Mamat B, Magnusson OT, Christensen J, HaraldssonMH, Mishra R, Pease B,
Hansen E, Singh J, Zembower D, Kim H, Kiselyov AS, Burgin AB, Gurney ME, Stewart
LJ. Discovery of leukotriene A4 hydrolase inhibitors using metabolomics biased fragment
crystallography. J Med Chem 2009, 52:4694-4715.
[165] Law RJ. Tetrabromobisphenol A: Investigating the worst-case scenario. Mar Pollut Bull
2009, 58:459-460.
[166] Bondensgaard K, Ankersen M, Thogersen H, Hansen BS, Wulff BS, Bywater RP.
Recognition of privileged structures by G-protein coupled receptors. J Med Chem
2004,47:888-899.
[167] Schnur DM, Hermsmeier MA, Tebben AJ. Are target-family-privileged substructures truly
privileged? J Med Chem 2006, 49:2000-2009.
[168] Clark M, Wiseman JS. Fragment-based prediction of the clinical occurrence of long QT
syndrome and torsade de pointes. J Chem Inf Model 2009, 49:2617-2626.
[169] Oprea TI, Blaney JM. Cheminformatics approaches to fragment-based lead discovery. In:
Jahnke W, Erlanson DA, Eds. Fragment-Based Approaches in Drug Discovery. Methods
and Principles in Medicinal Chemistry, Vol. 34. Weinheim: Wiley-VCH Verlag GmbH,
2006. pp 91-111.
[170] Tanaka N, Ohno K, Niimi T,Moritomo A, Mori K, OritaM. Small-world phenomena in
chemical library networks: Application to fragment-based drug discovery. J Chem Inf
Model 2009, 49:2677-2686.
[171] Chen H, Gao J, Lu Y, Kou G, Zhang H, Fan L, Sun Z, Guo Y, Zhong Y. Preparation and
characterization of PE38KDEL-loaded anti-HER2 nanoparticles for targeted cancer
therapy.J Control Release 2008,128:209-216.
[172] Lewell XQ, Judd DB, Watson SP, Hann MM. RECAP—Retrosynthetic combinatorial
analysis procedure: A powerful new technique for identifying privileged molecular
fragments with useful applications in combinatorial chemistry. J Chem Inf Comput Sci.
1998, 38:511-522.
[173] Parn J, Degen J, Rarey M. Exploring fragment spaces under multiple physicochemical
constraints. J Comput Aided Mol Des 2007,21:327-340.
[174] Durrant JD, Amaro RE, McCammon JA. AutoGrow: A novel algorithm for protein
inhibitor design. Chem Biol Drug Des 2009, 73:168-178.
[175] Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ.
Automated docking using a Lamarckian genetic algorithm and an empirical binding free
energy function. J Comput Chem 1998, 19:1639-1662.
[176] Kutchukian PS, Lou D, Shakhnovich EI. FOG: Fragment Optimized Growth algorithm for
the de novo generation of molecules occupying drug-like chemical space. J Chem Inf
Model 2009,49:1630-1642.
[177] Pearlman DA, Murcko MA. CONCERTS: Dynamic connection of fragments as an
approach to de novo ligand design. J Med Chem. 1996,39:1651-1663.
[178] Bohm HJ. The computer program LUDI:A new method for the de novo design of enzyme
inhibitors. J Comput Aided Mol Des 1992,6:61-78.
[179] Bohm HJ. On the use of LUDI to search the Fine Chemicals Directory for ligands of
proteins of known three-dimensional structure. J Comput Aided Mol Des 1994,8:623-632.
Search WWH ::




Custom Search