Chemistry Reference
In-Depth Information
[146} McRobb FM, Capuano B, Crosby IT, Chalmers D, Yuriev E, Homology modeling and
docking evaluation of aminergic G protein-coupled receptors, j. Chem. Inf. Model, 2010,
50:626-637.
[147] de Graaf C, Kooistra AJ, Vischer HF, Katritch V, Kujer M, Shiroishi M, Iwata S,
Shimamura T, Stevens RC, de Esch U, Leurs R, Crysal structure-based virtual screening for
fragment-like ligands of the human histamine H(1) receptor, J. Med. Chem, 2011, 54:8195-
8206.
[148] Hsieh JH, YinS, Liu S, Sedyakh A, Dokholyan NV, Tropsha A, Combined application of
chemoinformatics-and physical force field-based scoring functions improves binding
affinity prediction for CSAR data sets, J. Chem. Inf. Models, 2011, 51:2027-2035.
[149] Tang H, Wang XS, Hsieh JH, Tropsha A. Do crystal structures obviate the need for
theoretical models of GPCRs for structure-based virtual screening? Proteins, 2012:30:
1503-1521.
[150] Sheng C and Zhang W, Computational fragment-based drug design:An overview and
update, Medicinal Research Reviews, 2013, 33:554-598.
[151] Verdonk ML, Giangreco I, Hall Rj, Korb O, Mortenson PN, Murray CW, 2011, Docking
performance of fragments and drug like compounds, J. Med. Chem. 2011, 54:5422-5431.
[152] Villar HO, Hansen MR. Computational techniques in fragment based drug discovery. Curr
Top Med Chem 2007,7:1509-1513.
[153] Zoete V, Grosdidier A, Michielin O. Docking, virtual high throughput screening and in
silico , fragment-based drug design. J Cell Mol Med 2009,13:238-248.
[154] Makara GM. On sampling of fragment space. J Med Chem 2007, 50:3214-3221.
[155] Faller B, Ertl P. Computational approaches to determine drug solubility. Adv Drug Deliv
Rev 2007, 59:533-545.
[156] Fejzo J, Lepre CA, Peng JW, Bemis GW, Ajay, Murcko MA, Moore JM. The SHAPES
strategy: An NMR-based approach for lead generation in drug discovery. Chem Biol 1999,
6:755-769.
[157] Lepre C. Fragment-based drug discovery using the SHAPES method. Expert Opin Drug
Discov 2007, 2:1555-1566.
[158] Chung S, Parker JB, Bianchet M, Amzel LM, Stivers JT. Impact of linker strain and
flexibility in the design of a fragment-based inhibitor. Nat Chem Biol, 2009,5:407-413.
[159] Schneider G, Fechner U. Computer-based de novo design of drug-like molecules. Nat Rev
Drug Discov 2005, 4:649-663.
[160] Zhu Z, Sun ZY, Ye Y, Voigt J, Strickland C, Smith EM, Cumming J, Wang L, Wong J,
Wang YS, Wyss DF, Chen X, Kuvelkar R, Kennedy ME, Favreau L, Parker E, McKittrick
BA, Stamford A, Czarniecki M, Greenlee W, Hunter JC. Discovery of cyclic
acylguanidines as highly potent and selective beta-site amyloid cleaving enzyme (BACE)
inhibitors: Part I-Inhibitor design and validation. J Med Chem, 2010,53:951-965.
[161] Johnson MC, Hu Q, Lingardo L, Ferre RA, Greasley S, Yan J, Kath J, Chen P, Ermolieff J,
Alton G. Novel isoquinolone PDK1 inhibitors discovered through fragment-based lead
discovery. J Comput Aided Mol Des 2011, 25:689-698.
[162] Congreve M, Carr R, Murray C, Jhoti H. A 'rule of three' for fragment-based lead
discovery? Drug Discov Today 2003, 8:876-877.
[163] Card GL, Blasdel L, England BP, Zhang C, Suzuki Y, Gillette S, Fong D, Ibrahim PN,
Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KY. A family of
Search WWH ::




Custom Search