Database Reference
In-Depth Information
Edge
Weight: value(probability)
e i
x i 1
x i 2
x i 3
e 1 :AB 10
(
0
.
3
)
15
(
0
.
3
)
20
(
0
.
4
)
B
D
e 2 :AC
5
(
0
.
2
)
10
(
0
.
3
)
15
(
0
.
5
)
e 3 :BD 20
(
0
.
4
)
25
(
0
.
4
)
30
(
0
.
2
)
A
e 4 :BE
5
(
0
.
2
)
25
(
0
.
6
)
40
(
0
.
2
)
e 5 :CE 10
(
0
.
5
)
20
(
0
.
1
)
45
(
0
.
4
)
C
(a) A graph.
E
)
(b) Probabilistic weights of edges.
e 6 :DE 10
(
0
.
3
)
20
(
0
.
6
)
50
(
0
.
1
20
25
30
10
20
50
10
0
.
15
0
.
15
0
20
0
.
10
.
20
.
1
15
0
.
15
0
.
15
0
25
0
.
10
.
30
20
2
(c) f e 1 , e 3 ( x 1 i , x 3 j ) .
0
.
10
.
10
.
30
10
(d) f e 3 , e 6 ( x 3 i , x 6 j ) .
0
.
10
.
Fig. 2.6 A probabilistic graph.
n
1
1 f e i , e i + 1 (
x i ,
x i + 1 )
x
x 1 + ... +
i =
f P (
x
)=
(2.6)
n
1
j = 2
f e j (
x j )
x n =
Proof. Since P is a simple path, each edge e i
P (1
i
) is only adjacent with e i 1
(if i
>
1) and e i + 1 (if i
<
n )in P . Therefore, given w e i , the weights w e 1 ,...,
w e i 1 are
conditionally independent on w e i + 1 ,...,
w e n . Equation 2.6 follows with basic proba-
bility theory.
In sequel, the cumulative distribution function of w P is
]=
0
F P (
x
)=
Pr
[
w P
x
f P (
x i )
(2.7)
<
x i
x
We call F P
(
x
)
the x -weight probability of path P .
Example 2.13 (Probabilistic graph and paths). A probabilistic graph is shown in
Figure 2.6, where the weight of each edge is represented by a set of samples and
their membership probabilities.
Path P
=
A
,
B
,
D
,
E
consists of edges AB, BD and DE. The joint probabilities
of
(
w AB ,
w BD )
and
(
w BD ,
w DE )
are shown in Figures 2.6(c) and 2.6(d), respectively.
The probability that w P =
45 is
[
=
]
Pr
w P
45
=
Pr
[
w e 1 =
15
,
w e 3 =
20
,
w e 6 =
10
]+
Pr
[
w e 1 =
10
,
w e 3 =
25
,
w e 6 =
10
]
f e 1 , e 3 (
15
,
20
) ×
f e 3 , e 6 (
20
,
10
)
f e 1 , e 3 (
10
,
25
) ×
f e 3 , e 6 (
25
,
10
)
=
+
f e 3 (
20
)
f e 3 (
25
)
=
0
.
075
Search WWH ::




Custom Search