Chemistry Reference
In-Depth Information
158. Schieborr U et al (2005) How much NMR data is required to determine a protein-ligand
complex structure? Chembiochem 6(10):1891-1898
159. Wang B, Westerhoff LM, Merz KM Jr (2007) A critical assessment of the performance
of protein-ligand scoring functions based on NMR chemical shift perturbations. J Med Chem
50(21):5128-5134
160. Gonzalez-Ruiz D, Gohlke H (2009) Steering protein-ligand docking with quantitative NMR
chemical shift perturbations. J Chem Inf Model 49(10):2260-2271
161. Xu X-P, Case DA (2001) Automated prediction of 15N, 13C ˆ
, 13C ˆ and 13C 0 chemical
shifts in proteins using a density functional database. J Biomol NMR 21(4):321-333
162. Nilges M (1995) Calculation of protein structures with ambiguous distance restraints.
Automated assignment of ambiguous NOE crosspeaks and disulphide connectivities. J Mol
Biol 245(5):645-660
163. Guntert P, Wuthrich K (2001) Sampling of conformation space in torsion angle dynamics
calculations. Comput Phys Commun 138(2):155-169
164. Gohlke H, Hendlich M, Klebe G (2000) Predicting binding modes, binding affinities and “hot
spots” for protein-ligand complexes using a knowledge-based scoring function. Perspect
Drug Discov Des 20:115-144
165. Osapay K, Case DA (1991) A new analysis of proton chemical shifts in proteins. J Am Chem
Soc 113(25):9436-9444
166. Branson KM et al (2009) Discovery of inhibitors of lupin diadenosine 5 0 ,5 000 -P(1), P(4)-
tetraphosphate hydrolase by virtual screening. Biochemistry 48(32):7614-7620
167. Jacobsson M et al (2008) Identification of Plasmodium falciparum spermidine synthase active
site binders through structure-based virtual screening. J Med Chem 51(9):2777-2786
168. Lee Y et al (2009) Identification of compounds exhibiting inhibitory activity toward the
Pseudomonas tolaasii toxin tolaasin I using in silico docking calculations, NMR binding
assays, and in vitro hemolytic activity assays. Bioorg Med Chem Lett 19(15):4321-4324
169. Veldkamp CT et al (2010) Targeting SDF-1/CXCL12 with a ligand that prevents activation
of CXCR4 through structure-based drug design. J Am Chem Soc 132(21):7242-7243
170. Irwin JJ, Shoichet BK (2005) ZINC-a free database of commercially available compounds
for virtual screening. J Chem Inf Model 45(1):177-182
171. Lorber DM, Shoichet BK (2005) Hierarchical docking of databases of multiple ligand
conformations. Curr Top Med Chem 5(8):739-749
172. Bembenek SD, Tounge BA, Reynolds CH (2009) Ligand efficiency and fragment-
based drug discovery. Drug Discov Today 14(5-6):278-283
173. Reynolds CH, Tounge BA, Bembenek SD (2008) Ligand binding efficiency: trends, physical
basis, and implications. J Med Chem 51(8):2432-2438
174. Barelier S et al (2010) Discovery of fragment molecules that bind the human peroxiredoxin
5 active site. PLoS One 5(3):e9744
175. Declercq JP et al (2001) Crystal structure of human peroxiredoxin 5, a novel type of
mammalian peroxiredoxin at 1.5 A resolution. J Mol Biol 311(4):751-759
176. Hajduk PJ, Huth JR, Fesik SW (2005) Druggability indices for protein targets derived
from NMR-based screening data. J Med Chem 48(7):2518-2525
177. Hajduk PJ, Huth JR, Tse C (2005) Predicting protein druggability. Drug Discov Today
10(23-24):1675-1682
178. Peng JW et al (2001) Nuclear magnetic resonance-based approaches for lead generation
in drug discovery. Methods Enzymol 338:202-230
179. Morris GM et al (1998) Automated docking using a Lamarckian genetic algorithm
and an empirical binding free energy function. J Comput Chem 19(14):1639-1662
180. Wang JF et al (1992) Solution studies of staphylococcal nuclease H124L. 2. 1H, 13C,
and 15N chemical shift assignments for the unligated enzyme and analysis of chemical
shift changes that accompany formation of the nuclease-thymidine 3 0 ,5 0 -bisphosphate-
calcium ternary complex. Biochemistry 31(3):921-936
Search WWH ::




Custom Search