Chemistry Reference
In-Depth Information
134. Scsibrany H et al (2003) Clustering and similarity of chemical structures represented by
binary substructure descriptors. Chemom Intell Lab Syst 67(2):95-108
135. Davis AM et al (2005) Components of successful lead generation. Curr Top Med Chem
5(4):421-439
136. Sams-Dodd F (2006) Drug discovery: selecting the optimal approach. Drug Discov Today
11(9-10):465-472
137. Fink T, Reymond JL (2007) Virtual exploration of the chemical universe up to 11 atoms of C,
N, O, F: assembly of 26.4 million structures (110.9 million stereoisomers) and analysis
for new ring systems, stereochemistry, physicochemical properties, compound classes,
and drug discovery. J Chem Inf Model 47(2):342-353
138. Lahana R (1999) How many leads from HTS? Drug Discov Today 4(10):447-448
139. Goode DR et al (2008) Identification of promiscuous small molecule activators in high-
throughput enzyme activation screens. J Med Chem 51(8):2346-2349
140. Foloppe N et al (2006) Identification of chemically diverse Chk1 inhibitors by receptor-based
virtual screening. Bioorg Med Chem 14(14):4792-4802
141. Richardson CM et al (2007) Discovery of a potent CDK2 inhibitor with a novel binding
mode, using virtual screening and initial, structure-guided lead scoping. Bioorg Med Chem
Lett 17(14):3880-3885
142. Pellecchia M et al (2004) NMR-based techniques in the hit identification and optimisation
processes. Expert Opin Ther Targets 8(6):597-611
143. Galperin MY, Koonin EV (2010) From complete genome sequence to 'complete' under-
standing? Trends Biotechnol 28(8):398-406
144. Tucker CL (2002) High-throughput cell-based assays in yeast. Drug Discov Today 7(18
Suppl):S125-S130
145. Lee YH et al (2005) Gene knockdown by large circular antisense for high-throughput
functional genomics. Nat Biotechnol 23(5):591-599
146. Joshi T et al (2004) Genome-scale gene function prediction using multiple sources of
high-throughput data in yeast Saccharomyces cerevisiae. OMICS 8(4):322-333
147. del Val C et al (2004) High-throughput protein analysis integrating bioinformatics and
experimental assays. Nucleic Acids Res 32(2):742-748
148. Laurie AT, Jackson RM (2006) Methods for the prediction of protein-ligand binding sites for
structure-based drug design and virtual ligand screening. Curr Protein Pept Sci 7(5):395-406
149. Blundell TL et al (2006) Structural biology and bioinformatics in drug design: opportunities
and challenges for target identification and lead discovery. Philos Trans R Soc Lond B Biol
Sci 361(1467):413-423
150. Vajda S, Guarnieri F (2006) Characterization of protein-ligand interaction sites using experi-
mental and computational methods. Curr Opin Drug Discov Devel 9(3):354-362
151. Mercier KA, Germer K, Powers R (2006) Design and characterization of a functional library
for NMR screening against novel protein targets. Comb Chem High Throughput Screen 9(7):
515-534
152. Mercier KA, Shortridge MD, Powers R (2009) A multi-step NMR screen for the identifica-
tion and evaluation of chemical leads for drug discovery. Comb Chem High Throughput
Screen 12(3):285-295
153. Powers R et al (2006) Comparison of protein active site structures for functional annotation of
proteins and drug design. Proteins 65(1):124-135
154. Park K, Kim D (2008) Binding similarity network of ligand. Proteins 71(2):960-971
155. Mercier KA et al (2009) Structure and function of Pseudomonas aeruginosa protein PA1324
(21-170). Protein Sci 18(3):606-618
156. Shortridge MD, Powers R (2009) Structural and functional similarity between the bacterial
type III secretion system needle protein PrgI and the eukaryotic apoptosis Bcl-2 proteins.
PLoS One 4(10):e7442
157. McCoy MA, Wyss DF (2000) Alignment of weakly interacting molecules to protein surfaces
using simulations of chemical shift perturbations. J Biomol NMR 18(3):189-198
Search WWH ::




Custom Search