Agriculture Reference
In-Depth Information
107. Ludewig, U.; Neuhäuser, B.; Dynowski, M. Molecular mechanisms of ammo-
nium transport and accumulation in plants. FEBS Lett. 2007, 581, 2301-2308,
doi:10.1016/j.febslet.2007.03.034.
108. Mae, T. Physiological nitrogen efficiency in rice: Nitrogen utilization, photosynthe-
sis and yield. In Plant Nutrition for Sustainable Food Production and Environment;
Ando, T., Fujita, K., Mae, T., Matsumoto, H., Mori, S., Sekiya, J., Eds.; Kluwer
Academic Publishers: Dordrecht, The Netherlands, 1997; pp. 51-60.
109. Hirel, B.; Lea, P.J. The molecular genetics of nitrogen use efficiency in crops. In The
Molecular and Physiological Basis of Nutrient Use Efficiency in Crops; Hawkes-
ford, M.J., Barraclough, P.B., Eds.; Wiley-Blackwell: Chichester, UK, 2011; pp.
139-164.
110. Schimel, J.P.; Chapin, F.S. Tundra plant uptake of amino acid and NH4+ nitro-
gen in situ: Plants compete well for amino acid N. Ecology 1996, 77, 2142-2147,
doi:10.2307/2265708.
111. Näsholm, T.; Ekblad, A.; Nordin, R.; Giesler, M.; Hogberg, M.; Hogberg, P. Boreal for-
est plants take up organic nitrogen. Nature 1998, 392, 914-916, doi:10.1038/31921.
112. Näsholm, T.; Huss-Danell, K.; Högberg, P. Uptake of organic nitrogen in the field by
four agriculturally important plant species. Ecology 2000, 81, 1155-1161.
113. Harrison, K.A.; Bol, R.; Bardgett, R.D. Do plant species with different growth strat-
egies vary in their ability to compete with soil microbes for chemical forms of ni-
trogen? Soil Biol. Biochem. 2008, 40, 228-237, doi:10.1016/j.soilbio.2007.08.004.
114. Biernath, C.; Fischer, H.; Kuzyakov, Y. Root uptake of N-containing and N-free low
molecular weight organic substances by maize. A 14C/15N tracer study. Soil Biol.
Biochem. 2008, 40, 2237-2245, doi:10.1016/j.soilbio.2008.04.019.
115. Paugfoo-Lonhienne, C.; Lonhienne, T.G.A.; Rentch, D.; Robinson, N.; Christie, M.;
Webb, R.I.; Gamage, H.K.; Caroll, B.J.; Schenk, P.M.; Schmidt, S. Plants can use
protein as a nitrogen source without assistance from other organisms. Proc. Natl.
Acad. Sci. USA 2007, 105, 4524-4529.
116. Tan, X.W.; Ikeda, H.; Oda, M. The absorption, translocation, and assimilation of
urea, nitrate or ammonium in tomato plants at different plant growth stages in hy-
droponic culture. Sci. Hortic. Amsterdam 2000, 84, 275-283, doi:10.1016/S0304-
4238(99)00108-9.
117. Kojima, S.; Bohner, A.; von Wirén, N. Molecular mechanisms of urea transport in
plants. J. Membrane. Biol. 2006, 212, 83-91, doi:10.1007/s00232-006-0868-6.
118. Kojima, S.; Bohner, A.; Gassert, B.; Yuan, L.; von Wirén, N. AtDUR3 represents
the major transporter for high-affinity urea transport across the plasma membrane of
nitrogen-deficient Arabidopsis roots. Plant J. 2007, 52, 30-40, doi:10.1111/j.1365-
313X.2007.03223.x.
119. Witte, C.P. Urea metabolism in plants. Plant Sci. 2010, 180, 431-438.
120. Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed. ed.; Academic Press: Lon-
don, UK, 2008; p. 800.
121. Hodge, A.; Helgason, T.; Fitter, A.H. Nutritional ecology of arbuscular mycorrhizal
fungi. Fungal Ecol. 2010, 3, 267-273, doi:10.1016/j.funeco.2010.02.002.
122. Peay, K.G.; Bidartondo, M.I.; Arnold, A.E. Not every fungus is everywhere: Scaling
to the biogeography of fungal-plant interactions across roots, shoots and ecosystems.
New Phytol. 2010, 185, 878-882, doi:10.1111/j.1469-8137.2009.03158.x.
 
Search WWH ::




Custom Search