Agriculture Reference
In-Depth Information
123. Tanaka, Y.; Yano, K. Nitrogen delivery to maize via myccorhizal hyphae depends
on the form of N supplies. Plant Cell Environ. 2005, 28, 1247-1254, doi:10.1111/
j.1365-3040.2005.01360.x.
124. Jackson, L.E.; Burger, M.; Cavagnaro, T.R. Nitrogen transformation and ecosys-
tem services. Annu. Rev. Plant. Biol. 2008, 59, 341-363, doi:10.1146/annurev.ar-
plant.59.032607.092932.
125. Miransari, M.; Bahrami, H.A.; Rejali, F.; Malakouti, M.J. Using arbuscular my-
corrhiza to reduce the stressful effects of soil compaction on wheat (Triticum aes-
tivum L.) growth. Soil. Biol. Biochem. 2008, 40, 1197-1206, doi:10.1016/j.soil-
bio.2007.12.014.
126. Miransari, M.; Rejali, F.; Bahrami, H.A.; Malakouti, M.J. Effect of soil compaction
and arbuscular mycorrhiza on corn (Zea mays L.) nutrient uptake. Soil. Till. Res.
2009, 103, 282-290, doi:10.1016/j.still.2008.10.015.
127. Daei, G.; Ardakani, M.; Rejali, F.; Teimuri, S.; Miransari, M. Alleviation of salinity
on wheat yield, yield components, and nutrient uptake using arbuscular myccorhizal
fungi under field condition. J. Plant Physiol. 2009, 166, 617-625, doi:10.1016/j.
jplph.2008.09.013.
128. Miransari, M. Arbuscular mycorrhizal fungi and nitrogen uptake. Arch. Microbiol.
2011, 193, 77-81, doi:10.1007/s00203-010-0657-6.
129. Tobar, R.; Azcon, R.; Barea, J.M. Improved nitrogen uptake and transport from 15N-
labelled nitrate by external hyphae of arbuscular mycorrhiza under water stressed
conditions. New Phytol. 1994, 126, 119-122, doi:10.1111/j.1469-8137.1994.
tb07536.x.
130. Tian, C.; Kasiborski, B.; Koul, R.; Mammers, P.J.; Bucking, H.; Shachar-Hill, Y.
Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbio-
sis: Gene characterization and the coordination of expression with nitrogen flux.
Plant Physiol. 2010, 153, 1175-1187, doi:10.1104/pp.110.156430.
131. Frey, B.; Schüpp, H. Transfer of symbiotically fixed nitrogen from berseem (Tri-
folium alexandrinum to maize via vesicular arbuscular mychorrhizal hyphae. New
Phytol. 1992, 122, 447-454, doi:10.1111/j.1469-8137.1992.tb00072.x.
132. Bonfante, P.; Anca, I.A. Plants, mycorrhizal fungi, and bacteria: A network of in-
teractions. Annu. Rev. Microbiol. 2009, 63, 363-383, doi:10.1146/annurev.mi-
cro.091208.073504.
133. Bonfante, P.; Genre, A. Mechanisms underlying beneficial plant-fungus interactions
in mycorrhizal symbiosis. Nat. Commun. 2010, 1, 1-11.
134. Lea, P.J.; Miflin, B.J. Nitrogen assimilation and its relevance to crop improvement. In
Annual Plant Reviews, Nitrogen Metabolism in Plants in the Post-genomic Era; Foyer,
C.H., Zhang, H., Eds.; Wiley-Blackwell: Chichester, UK, 2011; Volume 42, pp. 1-40.
135. Suzuki, A.; Knaff, D.B. Glutamate synthase: Structural, mechanistic and regulatory
properties, and role in the amino acid metabolism. Photosynth. Res. 2005, 83, 191-
217, doi:10.1007/s11120-004-3478-0.
136. Hirel, B.; Lea, P.J. Amino acid metabolism. In Plant Nitrogen; Lea, P.J., Morot-
Gaudry, J.F., Eds.; INRA, Springer-Verlag: Berlin, Germany, 2001; pp. 79-99.
137. Taira, M.; Valtersson, U.; Burkhardt, B.; Ludwig, R.A. Arabidopis thaliana GLN2-
encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts.
Plant Cell 2004, 16, 2048-2058, doi:10.1105/tpc.104.022046.
 
Search WWH ::




Custom Search