Environmental Engineering Reference
In-Depth Information
[30]
Holland H.D. Volcanic gases, black smokers, and the great oxidation event. Geochimica
et Cosmochimica Acta 2002; 66:3811-26.
[31]
Hotinski R.M., Bice K.L., Kump L.R., Najjar R.G. and Arthur M.A. Ocean stagnation
and end-Permian anoxia. Geology 2001; 29:7-10.
[32]
Jacobsen S.B. and Kaufman A.J. The Sr, C and O isotopic evolution of Neoproterozoic
seawater. Chemical Geology 1999; 161:37-57.
[33]
Jenkyns H.C. The early Toarcian (Jurassic) event: stratigraphy, sedimentary, and geo-
chemical evidence. American Journal of Science 1988; 288:101-51.
[34]
Jenkyns H.C. and Clayton C.J. Lower Jurassic epicontinental carbonates and mudstones
from England and Wales: chemostratigraphic signals and the early Toarcian anoxic event.
Sedimentology 1986; 44:687-706.
[35]
Joachimski M.M. and Buggisch W. Anoxic events in the late Frasnian - causes of the
Frasnian-Famennian faunal crisis? Geology 1993; 21:675-78.
[36]
Joachimski M.M., Ostertag-Henning C., Pancost R.D., Strauss H., Freeman K.H., Littke
R., Sinninghe Damste J.S. and Racki G. Water column anoxia, enhanced productivity and
concomitant changes in δ
34 S across the Frasnian-Famennian boundary (Kowala
- Holy Cross Mountains, Poland) Chemical Geology 2001; 175:109-31.
13 C and δ
[37]
Jones B. and Manning D.A.C. Comparison of geochemical indices used for the interpre-
tation of paleoredox conditions in mudrocks. Chemical Geology 1994; 111:111-29.
[38]
Kampschulte A. and Strauss H. The sulphur isotopic evolution of Phanerozoic seawater
based on the analysis of structurally substituted sulphate in carbonates. Chemical Geology
2004; 204:255-86.
[39]
Kasting J.F. Earth's early atmosphere. Science 1993; 259:920-26.
[40]
Kimura H. and Watanabe Y. Oceanic anoxia at the Precambrian-Cambrian boundary.
Geology 2001; 29:995-98.
[41]
Knoll A.H., Bambach R.K., Canfield D.E. and Grotzinger J.P. Comparative Earth history
and Late Permian mass extinction. Science 1996; 273:452-57.
13 C depth profiles from paleosols across the Permian-
Triassic boundary: evidence for methane release. Geological Society of America Bulletin
2000; 112:1459-72.
[42]
Krull E.S. and Retallack G.J. δ
[43]
Leventhal J.S. An interpretation of carbon and sulphur relationships in Black Sea sedi-
ments as indicators of environments of deposition. Geochimica et Cosmochimica Acta
1983; 47:133-37.
[44]
Lyons T.W. and Berner R.A. Carbon-sulphur-iron systematics of the uppermost deep-
water sediments of the Black Sea. Chemical Geology 1992; 99:1-28.
[45]
Lyons T.W., Kah L.C. and Gellatly A.M. “The Precambrian sulfur isotope record of
evolving atmospheric oxygen.” In The Precambrian Earth: Tempos and Events , P.G.
Eriksson et al. eds., Developments in Precambrian Geology Amsterdam, Elsevier, 2004.
Melezhik V.A., Fallick A.E., Medvedev P.V. and Makarikhin V.V. Extreme 13 C carb en-
richment in ca. 2.0 Ga magnesite-stromatolite-dolomite-'red beds' association in a global
context: a case for the world-wide signal enhanced by a local environment. Earth Science
Reviews 1999; 48:71-120.
[46]
[47]
Miller S.L. A production of amino acids under possible primitive earth conditions. Science
1953; 117:528-29.
Search WWH ::




Custom Search