Environmental Engineering Reference
In-Depth Information
[11]
Berner R.A. and Raiswell R. Burial of organic carbon and pyrite sulfur in sediments over
Phanerozoic time: a new theory. Geochimica et Cosmochimica Acta 1983; 47:855-62.
[12]
Berry W.B.N. and Wilde P. Progressive ventilation of the oceans - an explanation for
the distribution of the lower Paleozoic black shales. American Journal of Science 1978;
278:257-75.
[13]
Berry W.B.N., Wilde P. and Quinby-Hunt M.S. Paleozoic (Cambrian through Devonian)
anoxitrophic biotopes. Palaeogeography Palaeoclimatology Palaeoecology 1989; 74:3-
13.
[14]
Bosch H.-J., Sinninghe Damste J.S. and de Leeuw J.W. Molecular palaeontology of
Eastern Mediterranean sapropels: evidence for photic zone anoxia. Proceedings Ocean
Drilling Program, Scientific Results 1998; 160:285-95.
[15]
B ottcher M.E., Brumsack H.-J. and de Lange G.J. Sulfate reduction and related stable
isotope ( 34 S, 18 O) variations in interstitial waters from the eastern Mediterranean (Leg
160). Proceedings Ocean Drilling Program, Scientific Results 1998.
[16]
Calvert S.E., Nielsen B. and Fontugne M.R. Evidence from nitrogen isotope ratios for
enhanced productivity during formation of eastern Mediterranean sapropels. Nature 1992;
359:223-22.
[17]
Canfield D.E. Reactive iron in marine sediments. Geochimica et Cosmochimica Acta
1989; 53:619-32.
[18]
Canfield D.E. A new model for Proterozoic ocean chemistry. Nature 1998; 396:450-53.
[19]
Canfield D.E. and Teske A. Late Proterozoic rise in atmospheric oxygen concentration
inferred from phylogenetic and sulphur-isotope studies. Nature 1996; 382:127-32.
[20]
Cloud P. Atmospheric and hydrospheric evolution on the primitive earth. Science 1968;
160:729-36.
[21]
Demaison G.J. and Moore G.T. Anoxic environments and oil source bed genesis. Ameri-
can Association of Petroleum Geologists Bulletin 1980; 64:1179-1209.
[22]
Des Marais D.J., Strauss H., Summons R.E. and Hayes J.M. Carbon isotope evidence for
the stepwise oxidation of the Proterozoic environment. Nature 1992; 359:605-9.
[23]
Eastoe C.J. and Gustin M.M. Volcanogenic massive sulphide deposits and anoxia in the
Phanerozoic oceans. Ore Geology Reviews 1996; 10:179-97.
[24]
Eglinton G. and Calvin M. Chemical Fossils. Scientific American 1967; 261:32-43.
[25]
Ettensohn F.R. “Compressional tectonic controls on epicontinental black-shale deposition:
Devonian-Mississippian examples from North America.” In Shales and Mudstones ,Jurgen
Schieber, Winfried Zimmerle, Parvinder S. Sethi eds., Stuttgart, Schweizerbart'sche Ver-
lagsbuchhandlung, 1998.
[26]
Farquhar J., Bao H. and Thiemens M. Atmospheric influence of earth's earliest sulfur
cycle. Science 2000; 289:756-58.
[27]
Ginsburg R.N. and Beaudoin B. Cretaceous Resources, Events and Rhythms. NATO ASI
Series C: Mathematical and Physical Sciences Vol. 304, Dordrecht: Kluwer Academic
Publishers, 1990.
[28]
Godderis Y. and Veizer J. Tectonic control of chemical and isotopic composition of
ancient oceans and the impact of continental growth. American Journal of Science 2000;
300:434-61.
[29]
Holland H.D. When did the Earth's atmosphere become oxic? A Reply. The Geochemical
News 1999; 100:20-22.
Search WWH ::




Custom Search