Civil Engineering Reference
In-Depth Information
largely on the raw materials. A cellulose nanoi ber has more than 200 times the surface
area of isolated sot wood cellulose and possesses higher water-holding capacity, higher
crystallinity, higher tensile strength, and a i ner web-like network. In combination with
a suitable matrix polymer, cellulose nanoi ber networks show considerable potential as
ef ective reinforcement for high-quality specialty application of biobased composites.
However, the use of cellulose nanoi bers as nano-reinforcement in composites still has
to overcome some issues: 1) all the works related to bionanocomposites are still in labo-
ratory scale, mass production technique is unknown, 2) the nanoi ber isolation process
consumes a large amount of energy, water and chemicals, and 3) because of the higher
density of -OH groups on the surface of the nanoi bers, they are mostly restricted to
water-soluble polymers. Scientists are working to overcome these problems by applying
dif erent types of pretreatments and surface modii cation treatments. All these treat-
ments improve the process of isolation and properties of nanocellulose signii cantly.
h ese cellulose nanoi ber-reinforced composites can be used in medical devices, nano-
paper, construction materials, automobiles, sports equipment, electronics, pharmaceu-
ticals, cosmetics, packaging and so on. However, further research would improve the
properties of nanocelluloses as well as the properties of bionanocomposites.
Acknowledgement
h e authors would like to thanks to Universiti Sains Malaysia (USM), Penang, Malaysia,
for providing Research Grant No. RU-1001/PTEKIND/811195 and RU-I 1001/
PTEKIND/814133 for completing this review.
References
1. L. O. Ekebafe, J. E. Imanah, M. O. Ekebafe, and S. O. Ugbesia. Pac. J. Sc. Technol . 11 , 488 -
498 ( 2010 ).
2. S. Zhang , and J. Luo . J . Eng. Fibers Fabrics 6 , 69 - 72 ( 2011 ).
3. M. Joonobi, J. Harun, P. M. Tahir, L. H. Zaini, S. SaifulAzry, and M. D. Makinejad.
BioResources 5 , 2556 - 2566 ( 2010 ).
4. J. P. S. Morais, M. d. F. Rosa, L. D. Nascimento, D. M. d. Nascimento, and L. C. Alexandre.
Carbohydr. Polym . ( 2012 ).
5. E. Abraham , B. Deepa , L. Pothan , M. Jacob , S. h omas, U. Cvelbar, and R. Anandjiwala.
Carbohydr . Polym . 86 , 1468 - 1475 ( 2011 ).
6. G. Nyströ m , A. Mihranyan , A. Razaq , T. Lindströ m , L. Nyholm , and M. Strømme . J . Phys.
Chem. B 114 , 4178 - 4182 ( 2010 ).
7. D. Liu , X. Yuan , D. Bhattacharyya , and A. Easteal . Expr . Polym. Lett . 4 , 26 - 31 ( 2010 ).
8. F. Fahma , S. Iwamoto , N. Hori , T. Iwata , and A. Takemura . Cellulose 17 , 977 - 985 ( 2010 ).
9. P. Visakh , S. h omas, K. Oksman, and A. P. Mathew. BioResources 7 , 2156 - 2168 ( 2012 ).
10. D. Zhang , Q. Zhang , X. Gao , and G. Piao . Int . J. Polym. Sci . 2013 , 1 - 6 2013 .
11. J. Figueiredo, M. Ismael, C. Anjo and A. Duarte, in Carbohydrates in sustainable develop-
ment I, pp. 117-128, Springer, Berlin Heidelberg. (2010).
12. L. R. Lynd, P. J. Weimer, W. H. Van Zyl, and I. S. Pretorius. Microbiol . Mol. Biol. Rev . 66 ,
506 - 577 ( 2002 ).
13. T. Antczak . Fibres Text. East. Eur. 20 , 91 ( 2012 ).
Search WWH ::




Custom Search