Information Technology Reference
In-Depth Information
[34] Olson, W.K., et al., Influence of fluctuations on DNA curvature. A comparison of flexible and static
wedge models of intrinsically bent DNA. J Mol Biol, 1993. 232 (2): p. 530-54.
[35] Vlahovicek, K. and S. Pongor, Model.it: building three dimensional DNA models from sequence data.
Bioinformatics, 2000. 16 (11): p. 1044-5.
[36] Guex, N. and M.C. Peitsch, SWISS-MODEL and the Swiss-PdbViewer: an environment for
comparative protein modeling. Electrophoresis, 1997. 18 (15): p. 2714-23.
[37] Sayle, R.A. and E.J. Milner-White, RASMOL: biomolecular graphics for all. Trends Biochem Sci,
1995. 20 (9): p. 374.
[38] Macke, T. and D.A. Case, Modeling unusual nucleic acid structures, in Molecular Modeling of Nucleic
Acids, N.B. Leontes and J. SantaLucia, Editors. 1998, American Chemical Society: Washington DC. p.
379-393.
[39] Case, D.A., et al., AMBER 5. 1997, University of California: San Francisco.
[40] Barta, E., L. Kajan, and S. Pongor, IS: A web-site for introns statistics. Bioinformatics, 2003. 19 : p.
543.
[41] Long, M., S.J. de Souza, and W. Gilbert, Evolution of the intron-exon structure of eukaryotic genes.
Curr Opin Genet Dev, 1995. 5 (6): p. 774-8.
[42] Kriventseva, E.V. and M.S. Gelfand, Statistical analysis of the exon-intron structure of higher and
lower eukaryote genes. J Biomol Struct Dyn, 1999. 17 (2): p. 281-8.
[43] Tosato, V., et al., The DNA secondary structure of the Bacillus subtilis genome. FEMS Microbiol Lett,
2003. 218 (1): p. 23-30.
[44] http://bioweb.pasteur.fr/GenoList/SubtiList.
[45] McDonagh, P.D., P.J. Myler, and K. Stuart, The unusual gene organization of Leishmania major
chromosome 1 may reflect novel transcription processes. Nucleic Acids Res, 2000. 28 (14): p. 2800-3.
[46] Tosato, V., et al., Secondary DNA structure analysis of the coding strand switch regions of five
Leishmania major Friedlin chromosomes. Curr Genet, 2001. 40 (3): p. 186-94.
[47] Myler, P.J., et al., Genomic organization and gene function in Leishmania. Biochem Soc Trans, 2000.
28 (5): p. 527-31.
[48] Martinez-Calvillo, S., et al., Transcription of Leishmania major Friedlin chromosome 1 initiates in
both directions within a single region. Mol Cell, 2003. 11 (5): p. 1291-9.
[49] Szabo, G., Jr., F. Boldog, and N. Wikonkal, Disassembly of chromatin into approximately equal to 50
kb units by detergent. Biochem Biophys Res Commun, 1990. 169 (2): p. 706-12.
[50] Szabo, G., Jr., 50-kb chromatin fragmentation in the absence of apoptosis. Exp Cell Res, 1995. 221 (2):
p. 320-5.
[51] Gal, I., et al., Protease-elicited TUNEL positivity of non-apoptotic fixed cells. J Histochem Cytochem,
2000. 48 (7): p. 963-70.
[52] Varga, T., I. Szilagyi, and G. Szabo, Jr., Single-strand breaks in agarose-embedded chromatin of
nonapoptotic cells. Biochem Biophys Res Commun, 1999. 264 (2): p. 388-94.
[53] Szilagyi, I., et al., Non-random features of loop-size chromatin fragmentation. J Cell Biochem, 2003.
89 (6): p. 1193-205.
[54] Bansal, M., D. Bhattacharyya, and S. Vijaylakshmi, NUVIEW: software for display and interactive
manipulation of nucleic acid models. Comput Appl Biosci, 1995. 11 (3): p. 289-92.
[55] Sarai, A., et al., Sequence dependence of DNA conformational flexibility. Biochemistry, 1989. 28 (19):
p. 7842-9.
[56] De Santis, P., et al., Validity of the nearest-neighbor approximation in the evaluation of the
electrophoretic manifestations of DNA curvature. Biochemistry, 1990. 29 (39): p. 9269-73.
Search WWH ::




Custom Search