Chemistry Reference
In-Depth Information
207 Al Ghouleh, I., Khoo, N.K.H., Knaus, U.G., Griendling, K.K., Touyz, R.M., Than-
nickal, V.J., Barchowsky, A., Nauseef, W.M., Kelley, E.E., Bauer, P.M., Darley-
Usmar, V., Shiva, S., Cifuentes-Pagano, E., Freeman, B.A., Gladwin, M.T., and
Pagano, P.J. Oxidases and peroxidases in cardiovascular and lung disease: new
concepts in reactive oxygen species signaling. Free Radic. Biol. Med. 2011, 51 ,
1271-1288.
208 Nesnow, S., Grindstaff, R.D., Lambert, G., Padgett, W.T., Bruno, M., Ge, Y., Chen,
P.J., Wood, C.E., and Murphy, L. Propiconazole increases reactive oxygen species
levels in mouse hepatic cells in culture and in mouse liver by a cytochrome P450
enzyme mediated process. Chem. Biol. Interact. 2011, 194 , 79-89.
209 Buettner, G.R. Superoxide dismutase in redox biology: the roles of superoxide
and hydrogen peroxide. Anticancer Agents Med. Chem. 2011, 11 , 341-346.
210 Whittaker, J.W. Metal uptake by manganese superoxide dismutase. Biochem.
Biophys. Acta—Proteins Proteomics 2010, 1804 , 298-307.
211 Yamakura, F. and Kawasaki, H. Post-translational modifications of superoxide
dismutase. Biochem. Biophys. Acta—Proteins Proteomics 2010, 1804 , 318-325.
212 Zielonka, J., Sarna, T., Roberts, J.E., Wishart, J.F., and Kalyanaraman, B. Pulse
radiolysis and steady-state analyses of the reaction between hydroethidine and
superoxide and other oxidants. Arch. Biochem. Biophys. 2006, 456 , 39-47.
213 Tabares, L.C., Gätjens, J., and Un, S. Understanding the influence of the protein
environment on the Mn(II) centers in superoxide dismutases using high-field
electron paramagnetic resonance. Biochem. Biophys. Acta—Proteins Proteomics
2010, 1804 , 308-317.
214 Perry, J.J.P., Shin, D.S., Getzoff, E.D., and Tainer, J.A. The structural biochemistry
of the superoxide dismutases. Biochem. Biophys. Acta—Proteins Proteomics 2010,
1804 , 245-262.
215 Miller, A.F., Yikilmaz, E., and Vathyam, S. 15 N-NMR characterization of His resi-
dues in and around the active site of FeSOD. Biochim Biophys. Acta Proteins
Proteomics 2010, 1804 , 275-284.
216 Holley, A.K., Dhar, S.K., and St. Clair, D.K. Manganese superoxide dismutase vs.
p53: regulation of mitochondrial ROS. Mitochondrion 2010, 10 , 649-661.
217 Krause, M.E., Glass, A.M., Jackson, T.A., and Laurence, J.S. MAPping the chiral
inversion and structural transformation of a metal-tripeptide complex having
Ni-superoxide dismutase activity. Inorg. Chem. 2011, 50 , 2479-2487.
218 Ragsdale, S.W. Nickel-based enzyme systems. J. Biol. Chem. 2009, 284 , 18571-
18575.
219 Shearer, J., Neupane, K.P., and Callan, P.E. Metallopeptide based mimics with
substituted histidines approximate a key hydrogen bonding network in the metal-
loenzyme nickel superoxide dismutase. Inorg. Chem. 2009, 48 , 10560-10571.
220 Lugo-Huitrón, R., Blanco-Ayala, T., Ugalde-Muñiz, P., Carrillo-Mora, P., Pedraza-
Chaverrí, J., Silva-Adaya, D., Maldonado, P.D., Torres, I., Pinzón, E., Ortiz-Islas,
E., López, T., García, E., Pineda, B., Torres-Ramos, M., Santamaría, A., and La
Cruz, V.P.D. On the antioxidant properties of kynurenic acid: free radical scaveng-
ing activity and inhibition of oxidative stress. Neurotoxicol. Teratol. 2011, 33 ,
538-547.
Search WWH ::




Custom Search