Chemistry Reference
In-Depth Information
191 Mikhailov, V.A., Iniesta, J., and Cooper, H.J. Top-down mass analysis of protein
tyrosine nitration: comparison of electron capture dissociation with “slow-
heating” tandem mass spectrometry methods. Anal. Chem. 2010, 82 , 7283-7292.
192 Friedman, M. and Levin, C.E. Nutritional and medicinal aspects of D-amino acids.
Amino Acids 2012, 42 , 1553-1582.
193 Wu, G. Amino acids: metabolism, functions, and nutrition. Amino Acids 2009, 37 ,
1-17.
194 Jong, C.J., Azuma, J., and Schaffer, S. Mechanism underlying the antioxidant activ-
ity of taurine: prevention of mitochondrial oxidant production. Amino Acids
2012, 42 , 2223-2232.
195 Grimm, S., Höhn, A., and Grune, T. Oxidative protein damage and the protea-
some. Amino Acids 2012, 42 , 23-38.
196 Daugherty, A., Dunn, J.L., Rateri, D.L., and Heinecke, J.W. Myeloperoxidase, a
catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions.
J. Clin. Invest. 1994, 94 , 437-444.
197 Morgan, P.E., Pattison, D.I., Talib, J., Summers, F.A., Harmer, J.A., Celermajer,
D.S., Hawkins, C.L., and Davies, M.J. High plasma thiocyanate levels in smokers
are a key determinant of thiol oxidation induced by myeloperoxidase. Free Radic.
Biol. Med. 2011, 51 , 1815-1822.
198 Pattison, D.I. and Davies, M.J. Reactions of myeloperoxidase-derived oxidants
with biological substrates: gaining chemical insight into human inflammatory
diseases. Curr. Med. Chem. 2006, 13 , 3271-3290.
199 Van Der Veen, B.S., De Winther, M.P.J., and Heeringa, P. Myeloperoxidase: molec-
ular mechanisms of action and their relevance to human health and disease.
Antioxid. Redox Signal. 2009, 11 , 2899-2937.
200 Davies, M.J., Hawkins, C.L., Pattison, D.I., and Rees, M.D. Mammalian heme
peroxidases: from molecular mechanisms to health implications. Antioxid. Redox
Signal. 2008, 10 , 1199-1234.
201 Ashfaq, S., Abramson, J.L., Jones, D.P., Rhodes, S.D., Weintraub, W.S., Hooper,
W.C., Vaccarino, V., Harrison, D.G., and Quyyumi, A.A. The relationship between
plasma levels of oxidized and reduced thiols and early atherosclerosis in healthy
adults. J. Am. Coll. Cardiol. 2006, 47 , 1005-1011.
202 Sharma, V.K. and Sohn, M. Oxidation of amino acids, peptides, and proteins by
chlorine dioxide. Implications for water treatment. In Environmental Chemistry
of Sustainable World , Vol. 2, E. Lichtfouse, J. Schwarzbauer, and D. Robert, eds.
Springer Science+Business Media, New York, 2012.
203 Umile, T.P. and Groves, J.T. Catalytic generation of chlorine dioxide from chlorite
using a water-soluble manganese porphyrin. Angew. Chem. Int. Ed. 2011, 50 ,
695-698.
204 Lippert, A.R., Van De Bittner, G.C., and Chang, C.J. Boronate oxidation as a
bioorthogonal reaction approach for studying the chemistry of hydrogen perox-
ide in living systems. Acc. Chem. Res. 2011, 44 , 793-804.
205 Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J.
2009, 417 , 1-13.
206 Cleeter, M.W.J., Cooper, J.M., and Schapira, A.H.V. Nitric oxide enhances MPP +
inhibition of complex I. FEBS Lett. 2001, 504 , 50-52.
Search WWH ::




Custom Search