Chemistry Reference
In-Depth Information
116 Pattison, D.I. and Davies, M.J. Kinetic analysis of the reactions of hypobromous
acid with protein components: implications for cellular damage and use of
3-bromotyrosine as a marker of oxidative stress. Biochemistry 2004, 43 , 4799-
4809.
117 Di Simplicio, P., Franconi, F., Frosalí, S., and Di Giuseppe, D. Thiolation and
nitrosation of cysteines in biological fluids and cells. Amino Acids 2003, 25 ,
323-339.
118 Abello, N., Barroso, B., Kerstjens, H.A.M., Postma, D.S., and Bischoff, R. Chemical
labeling and enrichment of nitrotyrosine-containing peptides. Talanta 2010, 80 ,
1503-1512.
119 Zhang, Q., Qian, W.J., Knyushko, T.V., Clauss, T.R.W., Purvine, S.O., Moore, R.J.,
Sacksteder, C.A., Chin, M.H., Smith, D.J., Camp, D.G., II, Bigelow, D.J., and Smith,
R.D. A method for selective enrichment and analysis of nitrotyrosine-containing
peptides in complex proteome samples. J. Proteome Res. 2007, 6 , 2257-2268.
120 Maleknia, S.D., Wong, J.W., and Downard, K.M. Photochemical and electrophysi-
cal production of radicals on millisecond timescales to probe the structure,
dynamics and interactions of proteins. Photochem. Photobiol. Sci. 2004, 3 ,
741-748.
121 Nukuna, B.N., Sun, G., and Anderson, V.E. Hydroxyl radical oxidation of cyto-
chrome c by aerobic radiolysis. Free Radic. Biol. Med. 2004, 37 , 1203-1213.
122 Sharp, J.S., Becker, J.M., and Hettich, R.L. Analysis of protein solvent accessible
surfaces by photochemical oxidation and mass spectrometry. Anal. Chem. 2004,
76 , 672-683.
123 Hambly, D.M. and Gross, M.L. Laser flash photolysis of hydrogen peroxide to
oxidize protein solvent-accessible residues on the microsecond timescale. J. Am.
Soc. Mass Spectrom. 2005, 16 , 2057-2063.
124 Bridgewater, J.D., Lim, J., and Vachet, R.W. Transition metal-peptide binding
studied by metal-catalyzed oxidation reactions and mass spectrometry. Anal.
Chem. 2006, 78 , 2432-2438.
125 Sharp, J.S., Sullivan, D.M., Cavanagh, J., and Tomer, K.B. Measurement of multi-
site oxidation kinetics reveals an active site conformational change in Spo0F as
a result of protein oxidation. Biochemistry 2006, 45 , 6260-6266.
126 Charvátová, O., Foley, B.L., Bern, M.W., Sharp, J.S., Orlando, R., and Woods, R.J.
Quantifying protein interface footprinting by hydroxyl radical oxidation and
molecular dynamics simulation: application to galectin-1. J. Am. Soc. Mass Spec-
trom. 2008, 19 , 1692-1705.
127 McClintock, C., Kertesz, V., and Hettich, R.L. Development of an electrochemical
oxidation method for probing higher order protein structure with mass spectrom-
etry. Anal. Chem. 2008, 80 , 3304-3317.
128 West, G.M., Tang, L., and Fitzgerald, M.C. Thermodynamic analysis of protein
stability and ligand binding using a chemical modification- and mass spectrometry-
based strategy. Anal. Chem. 2008, 80 , 4175-4185.
129 Kiselar, J.G., Datt, M., Chance, M.R., and Weiss, M.A. Structural analysis of pro-
insulin hexamer assembly by hydroxyl radical footprinting and computational
modeling. J. Biol. Chem. 2011, 286 , 43710-43716.
Search WWH ::




Custom Search