Chemistry Reference
In-Depth Information
101 Zhang, D., Jiang, D., Yanney, M., Zou, S., and Sygula, A. Ratiometric Raman
spectroscopy for quantification of protein oxidative damage. Anal. Biochem.
2009, 391 , 121-126.
102 Chung, W.G., Miranda, C.L., and Maier, C.S. Detection of carbonyl-modified
proteins in interfibrillar rat mitochondria using N′-aminooxymethylcarbonyl
hydrazino-D-biotin as an aldehyde/keto-reactive probe in combination with
Western blot analysis and tandem mass spectrometry. Electrophoresis 2008, 29 ,
1317-1324.
103 Shacter, E. Quantification and significance of protein oxidation in biological
samples. Drug Metab. Rev. 2000, 32 , 307-326.
104 Levine, R.L., Williams, J.A., Stadtman, E.R., and Shacter, E. Carbonyl assays for
determination of oxidatively modified proteins. Methods Enzymol. 1994, 233 ,
346-357.
105 Sweetlove, L.J. and Møller, I.M. Chapter 1: oxidation of proteins in plants-
mechanisms and consequences. Adv. Bot. Res. 2009, 52 , 1-23.
106 Cuddihy, S.L., Baty, J.W., Brown, K.K., Winterbourn, C.C., and Hampton, M.B.
Proteomic detection of oxidized and reduced thiol proteins in cultured cells.
Methods Mol. Biol. 2009, 519 , 363-375.
107 Eaton, P. Protein thiol oxidation in health and disease: techniques for measuring
disulfides and related modifications in complex protein mixtures. Free Radic. Biol.
Med. 2006, 40 , 1889-1899.
108 Fabisiak, J.P., Sedlov, A., and Kagan, V.E. Quantification of oxidative/nitrosative
modification of CYS34 in human serum albumin using a fluorescence-based SDS-
PAGE assay. Antioxid. Redox Signal. 2002, 4 , 855-865.
109 Baty, J.W., Hampton, M.B., and Winterbourn, C.C. Detection of oxidant sensitive
thiol proteins by fluorescence labeling and two-dimensional electrophoresis.
Proteomics 2002, 2 , 1261-1266.
110 McDonagh, B., Ogueta, S., Lasarte, G., Padilla, C.A., and Bárcena, J.A. Shotgun
redox proteomics identifies specifically modified cysteines in key metabolic
enzymes under oxidative stress in Saccharomyces cerevisiae . J. Proteomics 2009,
72 , 677-689.
111 Nagy, P. and Ashby, M.T. Reactive sulfur species: kinetics and mechanisms of the
oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid. J. Am.
Chem. Soc. 2007, 129 , 14082-14091.
112 Roeser, J., Bischoff, R., Bruins, A.P., and Permentier, H.P. Oxidative protein label-
ing in mass-spectrometry-based proteomics. Anal. Bioanal. Chem. 2010, 397 ,
3441-3455.
113 Harriman, A. Further comments on the redox potentials of tryptophan and tyro-
sine. J. Phys. Chem. 1987, 91 , 6102-6104.
114 Pattison, D.I. and Davies, M.J. Absolute rate constants for the reaction of hypo-
chlorous acid with protein side chains and peptide bonds. Chem. Res. Toxicol.
2001, 14 , 1453-1464.
115 Fu, X., Wang, Y., Kao, J., Irwin, A., D'Avignon, A., Mecham, R.P., Parks, W.C., and
Heinecke, J.W. Specific sequence motifs direct the oxygenation and chlorination
of tryptophan by myeloperoxidase. Biochemistry 2006, 45 , 3961-3971.
Search WWH ::




Custom Search