Civil Engineering Reference
In-Depth Information
Dl S cos 2 a i
l S 1 þ m i sin 2 a i
S i ¼
E i A i :
ð 2 : 20a Þ
Using ( 2.13 ) the strand tensile force is
:
X
n
z i cos 3 a i
1 þ m i sin 2 a i
S ¼ Dl S
l S
E i A i
ð 2 : 21 Þ
i¼0
The tensile force in a wire of a specific wire layer k is found by combining
( 2.20 ) and ( 2.21 ) with the elimination of Dl S /l S
cos 2 a k
1 þ m k sin 2 a k
E k A k
F k ¼
S :
ð 2 : 22 Þ
z i cos 3 a i
1 þ m i sin 2 a i
P i¼0
E i A i
The tensile stress in this wire is
cos 2 a k
1 þ m k
E k
r tk ¼ F k
A k
sin 2 a k
¼
S :
ð 2 : 23 Þ
P i¼0
z i cos 3 a i
1 þ m i sin 2 a i
E i A i
2.1.4.2 Wire Tensile Stress in Stranded Ropes
As before, the same derivation can be used for the stranded rope by now observing
a strand as a wire. The wire layers keep the counting index i and a certain wire
layer the index k, whereas the strand has the respective indices j and l. The total
number of wire layers in a strand is n W and the total number of strand layers is n s .
The wire rope tensile force is according to ( 2.13 )
S ¼ X
ns
F j
z j
cos b j
j¼0
and with the strand tensile force
n wj
F j ¼ X
F ij z ij cos a ij
i¼0
the wire rope tensile force is
Search WWH ::




Custom Search