Civil Engineering Reference
In-Depth Information
n wj
S ¼ X
n S
X
z j cos b j
F ij z ij cos a ij :
ð 2 : 24 Þ
j¼0
i¼0
According to ( 2.20 ), the wire tensile force in the wire layer i of the strand j is
cos 2 a ij
1 þ m ij sin 2 a ij
F ij ¼ Dl j
l j
E ij
A ij
ð 2 : 25 Þ
and according to ( 2.19 ) and the wire rope length L = l j
cos b j
cos 2 b j
1 þ m j sin 2 b j
Dl j
l j
¼ DL
L
:
ð 2 : 26 Þ
Then, using ( 2.25 ) and ( 2.26 ), the tensile force of a wire ij is
cos 2 b j
1 þ m j sin 2 b j
cos 2 a ij
1 þ m ij sin 2 a ij
F ij ¼ DL
L
E ij A ij :
ð 2 : 27 Þ
Using ( 2.27 ) and ( 2.24 ), the wire rope tensile force is
!
n wj
X
n S
z j cos 3 b j
1 þ m j sin 2 b j
X
z ij cos 3 a ij
1 þ m ij sin 2 a ij
S ¼ DL
L
E ij A ij
:
ð 2 : 28 Þ
j¼0
i¼0
Combining ( 2.27 ) and ( 2.28 ) by eliminating DL/L, the tensile force in the
certain wire k in the strand l is
cos 2 b l
1 þ m l sin 2 b l
cos 2 a kl
1 þ m kl sin 2 a kl
E kl
A kl
S
!
F kl ¼
ð 2 : 29 Þ
X
cos 3 b j
1 þ m j sin 2 b j
nw
P n S
j¼0
cos 3 a ij
1 þ m ij sin 2 a ij
z j
z ij
E ij
A ij
i¼0
and the tensile stress in that wire is
r tkl ¼ F kl
A kl :
ð 2 : 30 Þ
2.1.4.3 Influence of the Poisson Ratio
The Poisson ratio (transverse contraction ratio) for steel m i = 0.3 can also be used
for the steel wire helix in the strands. Because the length-related radial force
between the wires is very small, the reduction of the wire diameter and winding
Search WWH ::




Custom Search