Biology Reference
In-Depth Information
9. Tahlan K, Wilson R, Kastrinsky DB et al (2012) SQ109 targets MmpL3, a membrane trans-
porter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of
Mycobacterium tuberculosis . Antimicrob Agents Chemother 56:1797-1809
10. Van den Boogaard J, Kibiki GS, Kisanga ER et al (2009) New drugs against tuberculosis:
problems, progress, and evaluation of agents in clinical development. Antimicrob Agents
Chemother 53:849-862
11. Vilchèze C, Baughn AD, Tufariello J et al (2011) Novel inhibitors of InhA efficiently kill
Mycobacterium tuberculosis under aerobic and anaerobic conditions. Antimicrob Agents
Chemother 55:3889-3898
12. Banin E, Lozinski A, Brady KM et al (2008) The potential of desferrioxamine-gallium as an
anti- pseudomonas therapeutic agent. Proc Natl Acad Sci USA 105:16761-16766
13. Braun V, Pramanik A, Gwinner T et al (2009) Sideromycins: tools and antibiotics. Biometals
22:3-13
14. Chu BC, Garcia-Herrero A, Johanson TH et al (2010) Siderophore uptake in bacteria and the
battle for iron with the host; a bird's eye view. Biometals 23:601-611
15. Ji C, Juárez-Hernández RE, Miller MJ (2012) Exploiting bacterial iron acquisition: sidero-
phore conjugates. Future Med Chem 4:297-313
16. Miethke M, Marahiel MA (2007) Siderophore-Based iron acquisition and pathogen control.
Mol Biol Rev 71:413-451
17. Kaneko Y, Thoendel M, Olakanmi O et al (2007) The transition metal gallium disrupts
Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J
Clin Invest 117:877-888
18. Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport.
Biometals 15:325-339
19. Jurado RL (1997) Infections, and anemia of inflammation. Clin Infect Dis 25:888-895
20. Williams RJP (1990) An introduction to the nature of iron transport and storage. In: Ponka P,
Schulman HM, Woodworth RC (eds) Iron transport and storage. CRC Press, Boca Raton
21. Andrews SC, Robinson AK, Rodríguez-Quiñones F (2003) Bacterial iron homeostasis.
FEMS Microbiol Rev 27:215-237
22. Banerjee S, Farhana A, Ehtesham NZ et al (2011) Iron acquisition, assimilation and regula-
tion in mycobacteria. Infect Genet Evol 11:825-838
23. Hider RC, Kong XL (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637-657
24. Raymond KN, Dertz EA (2004) Biochemical and physical properties of siderophores. In:
Crosa JH, Mey AR, Payne SM (eds) Iron transport in bacteria. ASM Press, Washington, DC
25. Sandy M, Butler AA (2009) Microbial iron acquisition: marine and terrestrial siderophores.
Chem Rev 109:4580-4595
26. Ji C, Miller PA, Miller MM (2010) Iron transport-mediated drug delivery: practical syntheses
and in vitro antibacterial studies of tris-catecholate siderophore-aminopenicillin conjugates
reveals selectively potent antipseudomonal activity. J Am Chem Soc 134:9898-9901
27. Doorneweerd DD, Henne WA, Reifenberger RG et al (2010) Selective capture and identifica-
tion of pathogenic bacteria using an immobilized siderophore. Langmuir 26:15424-15429
28. Inomata T, Eguchi H, Matsumoto K (2007) Adsorption of microorganisms onto an artificial
siderophore-modified Au substrate. Biosens Bioelectron 22:751-755
29. Snow GA (1965) Isolation and Structure of mycobactin T, a growth factor from Mycobacterium
tuberculosis . Biochem J 97:166-175
30. Snow GA (1970) Mycobactins: iron-chelating growth factors from mycobacteria. Bacteriol
Rev 34:99-125
31. Barry CE III, Boshoff H (2005) Getting the iron out. Nat Chem Biol 1:127-128
32. Luo M, Fadeev EA, Groves JT (2005) Mycobactin-mediated iron acquisition within mac-
rophages. Nat Chem Biol 1:149-153
33. Gobin J, Horwitz MA (1996) Exochelins of Mycobacterium tuberculosis remove iron from
human iron-binding proteins and donate iron to mycobactins in the M. tuberculosis cell wall.
J Exp Med 183:1527-1532
Search WWH ::




Custom Search