Biology Reference
In-Depth Information
34. Gobin J, Moore CH, Reeve JR Jr, Wong DK et al (1995) Iron acquisition by Mycobacterium
tuberculosis : Isolation and characterization of a family of iron-binding exochelins. Proc Natl
Acad Sci USA 92:5189-5193
35. Rodriguez GM (2006) Control of iron metabolism in Mycobacterium tuberculosis . Trends
Microbiol 14:320-327
36. Quadri LEN (2008) Iron uptake in mycobacteria. In: Daffé M, Reyrat JM (eds) The myco-
bacterial cell envelope. ASM Press, Washington, DC
37. Rodriguez GM, Smith I (2006) Identification of an ABC transporter required for the iron
acquisition and virulence in Mycobacterium tuberculosis . J Bacteriol 188:424-430
38. McCready KA, Ratledge C (1979) Ferrimycobactin Reductase Activity from Mycobacterium
smegmatis . J Gen Microbiol 113:67-72
39. Brown KA, Ratledge C (1975) Iron transport in Mycobacterium smegmatis : ferrimycobac-
tin reductase (NAD(P)H:ferrimycobactin oxidoreductase), the enzyme releasing iron from its
carrier. FEBS Lett 53:262-266
40. Ratledge C (2004) Iron, mycobacteria and tuberculosis. Tuberculosis 84:110-130
41. Benz G, Schröder T, Kurz J et al (1982) Konstitution der Deferriform der Albomycine δ 1, δ 2
und ε . Ang Chem Int Ed 94:552-553
42. Clarke TE, Braun V, Winkelmann G et al (2002) X-ray crystallographic structures of the
Escherichia coli periplasmic protein FhuD bound to hydroxamate-type siderophores and the
antibiotic albomycin. J Biol Chem 277:13966-13972
43. Destoumieux-Garzón D, Thomas X, Santamaria M et al (2003) Microcin E492 antibacterial
activity: evidence for a TonB-dependent inner membrane permeabilization on Escherichia
coli . Mol Microbiol 49:1031-1041
44. Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S (2007) Microcins, gene-encoded
antibacterial peptides from enterobacteria. Nat Prod Rep 24:708-734
45. Lagos R, Wilkens M, Vergara C et al (1993) Microcin E492 forms ion channels in phospho-
lipid bilayer membranes. FEBS Lett 321:145-148
46. Nolan EM, Fischbach MA, Koglin A et al (2007) Biosynthethic tailoring of microcin
E492 m: post-translational modification affords an antibacterial siderophore-peptide conju-
gate. J Am Chem Soc 129:14336-14347
47. Vértesy L, Aretz W, Fehlhaber H-W et al (1995) Antibiotics from Streptomyces violaceus ,
DSM 8286, having a siderophor-aminoglycoside structure. Helv Chim Acta 78:46-60
48. Dong L, Roosenberg JM II, Miller MJ (2002) Total synthesis of desferrisalmycin b. J Am
Chem Soc 124:15001-15005
49. Roosenberg JM II, Miller MJ (2000) Total synthesis of the siderophore danoxamine. J Org
Chem 65:4833-4838
50. Wencewicz TA (2011) Development of microbe-selective antibacterial agents: from small
molecules to siderophores. Ph.D. Dissertation, University of Notre Dame, Notre Dame, IN
51. Wencewicz TA, Möllmann U, Long TE et al (2009) Is drug release necessary for antimi-
crobial activity of siderophore-drug conjugates? Syntheses and biological studies of the
naturally occurring salmycin “Trojan Horse” antibiotics and synthetic desferridanoxamine-
antibiotic conjugates. Biometals 22:633-648
52. Möllmann U, Dong L, Vértesy L et al (2004) Salmycins-natural siderophore-drug conju-
gates: prospects for modification and investigation based on successful total synthesis. Paper
presented at the 2nd international Biometals symposium, Garmisch-Partenkirchen, Germany
53. Maurer PJ, Miller MJ (1983) Total Synthesis of a mycobactin: mycobactin S2. J Am Chem
Soc 105:240-245
54. Hu J, Miller MJ (1997) Total synthesis of mycobactin S, a siderophore and growth promoter
of Mycobacterium smegmatis , and determination of its growth inhibitory activity against
Mycobacterium tuberculosis . J Am Chem Soc 119:3462-3468
55. Fennell KA, Möllmann U, Miller MJ (2008) Syntheses and biological activity of amamistatin
b and analogs. J Org Chem 73:1018-1024
56. Miller MJ, Walz AJ, Zhu H et al (2011) Design, synthesis, and study of a mycobactin-arte-
misinin conjugate that has selective and potent activity against tuberculosis and malaria. J
Am Chem Soc 133:2076-2079
Search WWH ::




Custom Search