Information Technology Reference
In-Depth Information
from the boundary encircling the array. The faulty regions can be regarded as
obstacles or holes in the array. To simplify the definition of a faulty region in our
construction, each faulty cell is assumed to be marked by a boundary symbol. A
typical 2-D rectangular array with 16 isolated holes (obstacles) is shown in Fig.
5. The problem is to design a firing squad synchronization algorithm such that
non-faulty cells on the array fire simultaneously. The algorithm given in The-
orem 4 can run without modification on any 2-D rectangular array containing
isolated rectangular holes. Snapshots of our 6-state fault-tolerant synchroniza-
tion algorithm running on a rectangular array of size 11 × 13 including 8 holes
are shown in Fig. 6.
Step: 12345678
1 Q Q Q Q Q Q Q Q
2 Q Q Q Q Q Q Q Q
3 Q Q Q P Q Q Q Q
4 Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q
Step: 12345678
1 Q Q Q Q Q Q Q Q
2 Q Q Q L Q Q Q Q
3 Q Q L D S Q Q Q
4 Q Q Q S Q Q Q Q
5 Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q
Step: 12345678
1 Q Q Q L Q Q Q Q
2 Q Q L Q D Q Q Q
3 Q L Q D Q S Q Q
4 Q Q D Q S Q Q Q
5 Q Q Q S Q Q Q Q
6 Q Q Q Q Q Q Q Q
Step: 12345678
1 Q Q L Q D1 Q Q Q
2 Q L Q Q D D2 Q Q
3 L Q Q D Q Q S Q
4 Q D2 D Q Q S Q Q
5 Q Q D1 Q S Q Q Q
6 Q Q Q S Q Q Q Q
Step: 12345678
1 Q L Q Q Q D Q Q
2 L Q Q Q D Q Q Q
3 Q Q Q D Q Q Q S
4 Q Q D Q Q Q S Q
5 Q D Q Q Q S Q Q
6 Q Q Q Q S Q Q Q
Step: 12345678
1 K Q Q Q Q D Q Q
2 Q Q Q Q D Q Q Q
3 Q Q Q D Q Q Q Q
4 Q Q D Q Q Q Q S
5 D2 D Q Q Q Q S Q
6 Q D1 Q Q Q S Q Q
Step: 12345678
1 K I Q Q Q D Q Q
2 I Q Q Q D Q Q Q
3 Q Q Q D Q Q Q Q
4 Q Q D Q Q Q Q Q
5 Q D Q Q Q Q Q S
6 D Q Q Q Q Q S Q
Step: 12345678
1 K R I Q Q D Q Q
2 R I Q Q D Q Q Q
3 I Q Q D Q Q Q Q
4 Q Q D Q Q Q Q Q
5 Q D Q Q Q Q Q Q
6 D Q Q Q Q Q Q K
Step: 12345678
1 K A Q I Q D Q Q
2 A Q I Q D Q Q Q
3 Q I Q D Q Q Q Q
4 I Q D Q Q Q Q Q
5 Q D Q Q Q Q Q G
6 D Q Q Q Q Q G K
Step: 12345678
1
Step:1 12345678
1 K A R Q Q X Q Q
2 A R Q Q X Q Q Q
3 R Q Q X Q Q Q G
4 Q Q X Q Q Q G Q
5 Q X Q Q Q G Q A
6 X Q Q Q G Q A K
Step:1 12345678
1 K R B Q Q A W Q
2 R B Q Q A W Q G
3 B Q Q A W Q G H
4 Q Q A W Q G H Q
5 Q A W Q G H Q A
6 A W Q G H Q A K
Step:12
12345678
1 K A B Q Q A R G
2 A B Q Q A R G Q
3 B Q Q A R G Q Q
4 Q Q A R G Q Q H
5 Q A R G Q Q H A
6 A R G Q Q H A K
Step:1 12345678
1 K A B Q Q R K H
2 A B Q Q R K H Q
3 B Q Q R K H Q Q
4 Q Q R K H Q Q B
5 Q R K H Q Q B H
6 R K H Q Q B H K
Step:1 12345678
1
Step:1 12345678
1 K A B R G H K R
2 A B R G H K R I
3 B R G H K R I H
4 R G H K R I H B
5 G H K R I H B A
6 H K R I H B A K
Step:1 12345678
1 K A Q K Q A K A
2 A Q K Q A K A Q
3 Q K Q A K A Q K
4 K Q A K A Q K Q
5 Q A K A Q K Q A
6 A K A Q K Q A K
Step:1 12345678
1 K A G K I A K A
2 A G K I A K A G
3 G K I A K A G K
4 K I A K A G K I
5 I A K A G K I A
6 A K A G K I A K
Step:1 12345678
1 K K K K K K K K
2 K K K K K K K K
3 K K K K K K K K
4 K K K K K K K K
5 K K K K K K K K
6 K K K K K K K K
Step:1 12345678
1
T T T T T T T T
K A Q R
I
D Q Q
K A B Q R G K
I
2
A Q R
I
D Q Q Q
2
A B Q R G K
I
H
2
T T T T T T T T
3 Q R
I
D Q Q Q Q
3
B Q R G K
I
H Q
3
T T T T T T T T
4
R
I
D Q Q Q Q G
4 Q R G K
I
H Q B
4
T T T T T T T T
5
R G K
I
H Q B A
5
T T T T T T T T
5
I
D Q Q Q Q G H
6 G K
I
H Q B A K
6
T T T T T T T T
6
D Q Q Q Q G H K
Fig. 7. Snapshots of our 19-state linear-time generalized firing squad synchronization
algorithm on rectangular arrays
[Theorem 5] There exists a 6-state 2-D CA that can synchronize any m × n
rectangular array containing isolated rectangular holes in 2( m + n ) 4 steps.
4.2 Multi-dimensional Extension
Theorem 4 can be readily extended to multi-dimensional cases. For example, we
can give an extended theorem for three-dimensional (3-D) arrays.
[Theorem 6] There exists a 6-state firing squad synchronization algorithm that
can synchronize any 3-D m × n × solid arrays in 2( m + n + ) 6 steps.
Search WWH ::




Custom Search