Biomedical Engineering Reference
In-Depth Information
Liu, H. & Webster, T.J., 2011. Enhanced biological and mechanical properties of well-dispersed nanophase
ceramics in polymer composites: From 2D to 3D printed structures. Materials Science and Engineering: C ,
31(2), pp. 77-89. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0928493110001761 . [Accessed
May 27, 2014].
Liu, J. et al., 2013. Fabrication and Characterization of Porous 45S5 Glass Scaffolds via Direct Selective Laser
Sintering. Materials and Manufacturing Processes , 28(6), pp. 610-615. Available at: http://www.tandfonline.
com/doi/abs/10.1080/10426914.2012.736656 . [Accessed June 17, 2014].
Liu, L. et al., 2009. A Novel Osteochondral Scaffold Fabricated via Multi-nozzle Low-temperature Deposition
Manufacturing. Journal of Bioactive and Compatible Polymers , 24(1 Suppl), pp. 18-30. Available at: http://
jbc.sagepub.com/cgi/doi/10.1177/0883911509102347 . [Accessed July 6, 2010].
Long, M., Rack, H.J., 1998. Titanium alloys in total joint replacement — a materials science perspective. Biomaterials
19, 1621-1639 .
Ma, H. et al., 2012. Preparation and cytocompatibility of polylactic acid/hydroxyapatite/graphene oxide
nanocomposite fibrous membrane. Chinese Science Bulletin , 57(23), pp. 3051-3058. Available at: http://link.
springer.com/10.1007/s11434-012-5336-3 . [Accessed September 5, 2013].
Marques, P. a. a. P. et al., 2012. Graphene Oxide and Hydroxyapatite as Fillers of Polylactic Acid Nanocomposites:
Preparation and Characterization. Journal of Nanoscience and Nanotechnology , 12(8), pp. 6686-6692.
Available at: http://openurl.ingenta.com/content/xref?genre=article&issn=1533-4880&volume=12&issue=8
&spage=6686. [Accessed September 5, 2013].
Matassi, F. et al., 2013. Porous metal for orthopedics implants. Clinical cases in mineral and bone metabolism:
the official journal of the Italian Society of Osteoporosis, Mineral Metabolism, and Skeletal Diseases, 10(2),
pp. 111-115. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3796997&tool=pmcen
trez&rendertype=abstract.
Maté-Sánchez de Val, J.E. et al., 2014. Comparison of three hydroxyapatite/ b -tricalcium phosphate/collagen
ceramic scaffolds: an in vivo study. Journal of biomedical materials research. Part A, 102(4), pp. 1037-46.
Available at: http://www.ncbi.nlm.nih.gov/pubmed/23649980 . [Accessed May 27, 2014].
Matsuno, T. et al., 2008. Preparation of injectable 3 D-formed beta-tricalcium phosphate bead/alginate composite
for bone tissue engineering. Dental materials journal , 27(6), pp. 827-34. Available at: http://www.ncbi.nlm.
nih.gov/pubmed/19241692 .
Mehrali, M. et al., 2013. Dental implants from functionally graded materials. Journal of biomedical materials
research. Part A , 101(10), pp. 3046-57. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23754641 .
[Accessed November 4, 2013].
Michiardi, a et al., 2006. New oxidation treatment of NiTi shape memory alloys to obtain Ni-free surfaces
and to improve biocompatibility. Journal of biomedical materials research. Part B, Applied biomaterials ,
77(2), pp. 249-56. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16245290 . [Accessed May 23,
2014].
Moseke, C. & Gbureck, U., 2010. Tetracalcium phosphate: Synthesis, properties and biomedical applications. Acta
biomaterialia , 6(10), pp. 3815-23. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20438869 . [Accessed
June 15, 2014].
Mullen, L. et al., 2009. Selective Laser Melting: a regular unit cell approach for the manufacture of porous, titanium,
bone in-growth constructs, suitable for orthopedic applications. Journal of biomedical materials research. Part
B, Applied biomaterials , 89(2), pp. 325-34. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18837456 .
[Accessed June 20, 2014].
Murr, L.E. et al., 2012. Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting
Technologies. Journal of Materials Science & Technology , 28(1), pp. 1-14. Available at: http://linkinghub.
elsevier.com/retrieve/pii/S1005030212600164 . [Accessed June 2, 2014].
Murr, L.E. et al., 2009. Microstructures and mechanical properties of electron beam-rapid manufactured
Ti-6Al-4V biomedical prototypes compared to wrought Ti-6Al-4V. Materials Characterization , 60(2),
Search WWH ::




Custom Search