Biomedical Engineering Reference
In-Depth Information
Karageorgiou, V. & Kaplan, D., 2005. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials , 26(27),
pp. 5474-91. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15860204 . [Accessed August 14, 2013].
Kim, J. et al., 2014. In vivo performance of combinations of autograft, demineralized bone matrix, and tricalcium
phosphate in a rabbit femoral defect model. Biomedical materials (Bristol, England) , 9(3), p.035010. Available
at: http://www.ncbi.nlm.nih.gov/pubmed/24784998 . [Accessed June 15, 2014].
Kim, S.-S. et al., 2006. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering.
Biomaterials , 27(8), pp. 1399-409. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16169074 .
Kobayashi, S. & Murakoshi, T., 2014. Characterization of mechanical properties and bioactivity of hydroxyapatite
/ b -tricalcium phosphate composites. Advanced Composite Materials , 23(2), pp. 163-177.
Koh, J.L., 2004. The effect of graft height mismatch on contact pressure following osteochondral grafting: a
biomechanical study. American Journal of Sports Medicine , 32(2), pp. 317-320. Available at: http://journal.
ajsm.org/cgi/doi/10.1177/0363546503261730 . [Accessed August 7, 2013].
Krishna, B.V., Bose, S. & Bandyopadhyay, A., 2007. Low stiffness porous Ti structures for load-bearing implants.
Acta biomaterialia, 3(6), pp. 997-1006. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17532277 .
[Accessed May 26, 2014].
Kujala, S. et al., 2003. Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-
titanium bone graft substitute. Biomaterials , 24(25), pp. 4691-4697. Available at: http://linkinghub.elsevier.
com/retrieve/pii/S0142961203003594 . [Accessed July 29, 2010].
Lee, J.W. et al., 2009. Development of nano- and microscale composite 3D scaffolds using PPF/DEF-HA and
micro-stereolithography. Microelectronic Engineering , 86(4-6), pp. 1465-1467. Available at: http://linkinghub.
elsevier.com/retrieve/pii/S0167931708006473 . [Accessed June 18, 2014].
Lee, J.W. et al., 2008. Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-
stereolithography technology. Journal of Biomedical Materials Research. Part B, Applied Biomaterials , 87(1),
pp. 1-9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18335437 . [Accessed July 29, 2010].
Leong, K., Cheah, C.M. & Chua, C.K., 2003. Solid freeform fabrication of three-dimensional scaffolds for
engineering replacement tissues and organs. Biomaterials , 24(13), pp. 2363-78. Available at: http://linkinghub.
elsevier.com/retrieve/pii/S0142961203000309 .
Li, J.P. et al., 2005. Porous Ti6Al4V scaffolds directly fabricated by 3D fibre deposition technique: effect of nozzle
diameter. Journal of materials science. Materials in medicine , 16(12), pp. 1159-63. Available at: http://www.
ncbi.nlm.nih.gov/pubmed/16362216 .
Li, P.J. et al., 2007. Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials,
28(18), pp. 2810-2820.
Li, X. et al., 2007. Fabrication of bioceramic scaffolds with pre-designed internal architecture by gel casting and
indirect stereolithography techniques. Journal of Porous Materials , 15(6), pp. 667-671. Available at: http://
link.springer.com/10.1007/s10934-007-9148-9 . [Accessed June 18, 2014].
Lin, C.Y., Kikuchi, N. & Hollister, S.J., 2004. A novel method for biomaterial scaffold internal architecture design
to match bone elastic properties with desired porosity. Journal of biomechanics , 37(5), pp. 623-36. Available
at: http://www.ncbi.nlm.nih.gov/pubmed/15046991 . [Accessed April 28, 2014].
Lin, J.G. et al., 2009. Degradation of the strength of porous titanium after alkali and heat treatment. Journal
of Alloys and Compounds , 485(1-2), pp. 316-319. Available at: http://linkinghub.elsevier.com/retrieve/pii/
S0925838809009724 . [Accessed May 30, 2014].
Liska, R. et al., 2007. Photopolymers for rapid prototyping. Journal of Coatings Technology and Research , 4(4),
pp. 505-510. Available at: http://www.springerlink.com/index/10.1007/s11998-007-9059-3 . [Accessed July 29, 2010].
Liu, D., et al., 2013a. Mechanical properties' improvement of a tricalcium phosphate scaffold with poly- L -lactic
acid in selective laser sintering. Biofabrication 5, 1-10 .
Liu, H. et al., 2012. Simultaneous Reduction and Surface Functionalization of Graphene Oxide for Hydroxyapatite
Mineralization. The Journal of Physical Chemistry C , 116(5), pp. 3334-3341. Available at: http://pubs.acs.org/
doi/abs/10.1021/jp2102226 .
Search WWH ::




Custom Search