Biomedical Engineering Reference
In-Depth Information
Chang, B.S. et al., 2000. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials ,
21(12), pp. 1291-8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19845154 .
Cheng, S. et al., 2013. Hip and knee replacements in Canada: Canadian joint replacement registry 2013 annual
report , Ottawa. Available at: https://secure.cihi.ca/free_products/CJRR_2013_Annual_Report_EN.pdf .
Chumnanklang, R. et al., 2007. 3D printing of hydroxyapatite: Effect of binder concentration in pre-coated particle
on part strength. Materials Science and Engineering: C , 27(4), pp. 914-921. Available at: http://linkinghub.
elsevier.com/retrieve/pii/S092849310600378X . [Accessed August 22, 2013].
Cima, M. et al., 1995. Three Dimensional Printing, Patent Number 5,387,380.
Cima, M.J. et al., 1994. Three Dimensional Printing Techniques, Patent Number 5,340,656.
Cima, M.J. et al., 1993. Three-dimensional printing techniques, Patent Number 5,204,055.
Crystals, N.C.H. et al., 2006. Collagen Scaffolds Reinforced with Biomimetic Composite., 12.(9).
Curodeau, a, Sachs, E. & Caldarise, S., 2000. Design and fabrication of cast orthopedic implants with freeform
surface textures from 3-D printed ceramic shell. Journal of biomedical materials research , 53(5), pp. 525-35.
Available at: http://www.ncbi.nlm.nih.gov/pubmed/10984701 .
Dabrowski, B. et al., 2010. Highly porous titanium scaffolds for orthopaedic applications. Journal of biomedical
materials research. Part B, Applied biomaterials , 95(1), pp. 53-61. Available at: http://www.ncbi.nlm.nih.gov/
pubmed/20690174 . [Accessed June 20, 2014].
Dessì, M. et al., 2013. Novel biomimetic thermosensitive b -tricalcium phosphate/chitosan-based hydrogels for
bone tissue engineering. Journal of biomedical materials research. Part A , 101(10), pp. 2984-93. Available at:
http://www.ncbi.nlm.nih.gov/pubmed/23873836 . [Accessed June 15, 2014].
Detsch, R. et al., 2010. The resorption of nanocrystalline calcium phosphates by osteoclast-like cells. Acta
biomaterialia , 6(8), pp. 3223-33. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20206720 . [Accessed
May 22, 2014].
Dinda, G.P., Song, L. & Mazumder, J., 2008. Fabrication of Ti-6Al-4V Scaffolds by Direct Metal Deposition.
Metallurgical and Materials Transactions A, 39(12), pp. 2914-2922. Available at: http://link.springer.
com/10.1007/s11661-008-9634-y . [Accessed June 20, 2014].
Dorj, B. et al., 2013. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating
modified carbon nanotubes for hard tissue reconstruction. Journal of biomedical materials research. Part
A , 101(6), pp. 1670-81. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23184729 . [Accessed June 4,
2014].
Duan, B., Wang, M., Li, Z.Y., et al., 2010. Surface modification of three-dimensional Ca-P/PHBV nanocomposite
scaffolds by physical entrapment of gelatin and its in vitro biological evaluation. Frontiers of Materials
Science , 5(1), pp. 57-68. Available at: http://link.springer.com/10.1007/s11706-011-0101-0 . [Accessed June
12, 2014].
Duan, B., Wang, M., Zhou, W.Y., et al., 2010. Three-dimensional nanocomposite scaffolds fabricated via selective
laser sintering for bone tissue engineering. Acta biomaterialia , 6(12), pp. 4495-505. Available at: http://www.
ncbi.nlm.nih.gov/pubmed/20601244 . [Accessed June 12, 2014].
Duan, B., Cheung, W.L. & Wang, M., 2011. Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via
selective laser sintering for bone tissue engineering. Biofabrication , 3(1), p.015001. Available at: http://www.
ncbi.nlm.nih.gov/pubmed/21245522 . [Accessed June 12, 2014].
Duan, B. & Wang, M., 2010a. Customized Ca-P/PHBV nanocomposite scaffolds for bone tissue engineering:
design, fabrication, surface modification and sustained release of growth factor. Journal of the Royal Society,
Interface / the Royal Society , 7 Suppl 5, pp.S615-29. Available at: http://www.pubmedcentral.nih.gov/
articlerender.fcgi ?artid = 3024573&tool = pmcentrez&rendertype = abstract [Accessed June 12, 2014].
Duan, B. & Wang, M., 2010b. Encapsulation and release of biomolecules from Ca-P/PHBV nanocomposite
microspheres and three-dimensional scaffolds fabricated by selective laser sintering. Polymer Degradation and
Stability , 95(9), pp. 1655-1664. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0141391010002247 .
[Accessed June 12, 2014].
Search WWH ::




Custom Search