Biomedical Engineering Reference
In-Depth Information
Anada, T. et al., 2008. Dose-Dependent Osteogenic Effect of Octacalcium Phosphate on Mouse Bone Marrow
Stromal Cells. Tissue Engineering Part A , 14(6), pp. 965-978. Available at: http://www.liebertonline.com/doi/
abs/10.1089/ten.tea.2007.0339 . [Accessed June 15, 2014].
ASTM International, 2012. ASTM F2792-12a Standard Terminology for Additive Manufacturing Technologies ,
Available at: http://www.astm.org/Standards/F2792.htm .
Azhari, A. et al., 2014. Additive Manufacturing of Graphene-Hydroxyapatite Nanocomposite Structures.
International Journal of Applied Ceramic Technology , pp. 1-10. Available at: http://onlinelibrary.wiley.com/
doi/10.1111/ijac.12309/full .
Balla, V.K. et al., 2010. Porous tantalum structures for bone implants: fabrication, mechanical and in vitro
biological properties. Acta biomaterialia , 6(8), pp. 3349-59. Available at: http://www.pubmedcentral.nih.gov/
articlerender.fcgi ?artid = 2883027&tool = pmcentrez&rendertype = abstract. [Accessed June 20, 2014].
Bartel, D.L., Davy, D.T., Keaveny, T.M., 2006. Orthopaedic biomechanics: mechanics and design in musculoskeletal
systems First. Pearson Prentice Hall, Upper Saddle River .
Basalah, A. et al., 2012. Characterizations of additive manufactured porous titanium implants. Journal of
biomedical materials research. Part B, Applied biomaterials , 100(7), pp. 1970-9. Available at: http://www.
ncbi.nlm.nih.gov/pubmed/22865677 . [Accessed June 20, 2014].
Billi, F. & Campbell, P., 2010. Nanotoxicology of metal wear particles in total joint arthroplasty: a review of
current concepts. Journal of applied biomaterials & biomechanics: JABB , 8(1), pp. 1-6. Available at: http://
www.ncbi.nlm.nih.gov/pubmed/20740415 .
Biris, A.R. et al., 2011. Novel Multicomponent and Biocompatible Nanocomposite Materials Based on Few-Layer
Graphenes Synthesized on a Gold/Hydroxyapatite Catalytic System with Applications in Bone Regeneration.
The Journal of Physical Chemistry C , 115(39), pp. 18967-18976. Available at: http://pubs.acs.org/doi/
abs/10.1021/jp203474y .
Bohner, M. et al., 2011. Commentary: Deciphering the link between architecture and biological response of a
bone graft substitute. Acta biomaterialia , 7(2), pp. 478-84. Available at: http://www.ncbi.nlm.nih.gov/
pubmed/20709195 . [Accessed November 15, 2012].
Bohner, M., 2010. Resorbable biomaterials as bone graft substitutes. Materials Today , 13(1-2), pp. 24-30.
Available at: http://linkinghub.elsevier.com/retrieve/pii/S1369702110700146 . [Accessed May 1, 2014].
Bohner, M., Galea, L. & Doebelin, N., 2012. Calcium phosphate bone graft substitutes: Failures and hopes. Journal
of the European Ceramic Society , 32(11), pp. 2663-2671. Available at: http://linkinghub.elsevier.com/retrieve/
pii/S0955221912001021 . [Accessed October 26, 2012].
Bose, S. & Tarafder, S., 2012. Calcium phosphate ceramic systems in growth factor and drug delivery for bone
tissue engineering: A review. Acta biomaterialia , 8(4), pp. 1401-21. Available at: http://www.ncbi.nlm.nih.
gov/pubmed/22127225 . [Accessed March 16, 2012].
Butscher, A. et al., 2011. Structural and material approaches to bone tissue engineering in powder-based three-
dimensional printing. Acta Biomaterialia , 7(3), pp. 907-20. Available at: http://www.ncbi.nlm.nih.gov/
pubmed/20920616 . [Accessed March 8, 2013].
Cai, S. & Xi, J., 2008. A control approach for pore size distribution in the bone scaffold based on the hexahedral
mesh refinement. Computer-Aided Design, 40(10-11), pp. 1040-1050. Available at: http://linkinghub.elsevier.
com/retrieve/pii/S0010448508001838 . [Accessed May 21, 2014].
Campanelli, S., et al., 1994. Capabilities and Performances of the Selective Laser Melting Process. In: Meng, J.
(Ed.), New Trends in Technologies: Devices, Computer. Communication and Industrial Systems, pp. 233-254 .
Castilho, M. et al., 2013. Fabrication of computationally designed scaffolds by low temperature 3D printing.
Biofabrication , 5(3), p.035012. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23887064 . [Accessed
September 28, 2013].
Castilho, M. et al., 2011. Structural evaluation of scaffolds prototypes produced by three-dimensional printing. The
International Journal of Advanced Manufacturing Technology , 56(5-8), pp. 561-569. Available at: http://link.
springer.com/10.1007/s00170-011-3219-4 . [Accessed March 26, 2013].
Search WWH ::




Custom Search