Biomedical Engineering Reference
In-Depth Information
Bertassoni, L.E., Cecconi, M., et al., 2014. Hydrogel bioprinted microchannel networks for vascularization of tissue
engineering constructs. Lab on a chip, 20-22, Available at: http://www.ncbi.nlm.nih.gov/pubmed/24860845
[Accessed May 27, 2014].
Bettinger, C.J., et al., 2005. Three-Dimensional Microfluidic Tissue-Engineering Scaffolds Using a Flexible
Biodegradable Polymer. Advanced materials (Deerfield Beach, Fla.) 18 (2), 165-169, Available at:
http://onlinelibrary.wiley.com/doi/10.1002/adma.200500438/full [Accessed July 1, 2014].
Borenstein, J.T., et al., 2010. Functional endothelialized microvascular networks with circular cross-sections in a
tissue culture substrate. Biomedical microdevices 12 (1), 71-79, Available at: http://www.ncbi.nlm.nih.gov/
pubmed/19787455 [Accessed February 8, 2014].
Bryant, S.J., Nuttelman, C.R., Anseth, K.S., 2000. Cytocompatibility of UV and visible light photoinitiating systems
on cultured NIH/3T3 fibroblasts in vitro. Journal of biomaterials science. Polymer edition 11 (5), 439-457,
Available at: http://www.tandfonline.com/doi/abs/10.1163/156856200743805 [Accessed July 1, 2014].
Chan, V., et al., 2010. Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell
encapsulation. Lab on a chip 10 (16), 2062-2070, Available at: http://www.ncbi.nlm.nih.gov/pubmed/20603661
[Accessed February 28, 2014].
Chang, D.R., et al., 2013. Lung epithelial branching program antagonizes alveolar differentiation. Proceedings
of the National Academy of Sciences of the United States of America 110 (45), 18042-18051, Available at:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3831485&tool=pmcentrez&rendertype=abstract
[Accessed May 29, 2014] .
Chiu, L.L.Y., et al., 2012. Perfusable branching microvessel bed for vascularization of engineered tissues.
Proceedings of the National Academy of Sciences of the United States of America 109 (50), E3414-E3423,
Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3528595&tool=pmcentrez&renderty
pe=abstract [Accessed January 28, 2014] .
Chiu, Y.-C., et al., 2009. Formation of Microchannels in Poly(ethylene glycol) Hydrogels by Selective Degradation of
Patterned Microstructures. Chemistry of Materials 21 (8), 1677-1682, Available at: http://www.pubmedcentral.
nih.gov/articlerender.fcgi?artid=2810413&tool=pmcentrez&rendertype=abstract [Accessed June 9, 2014] .
Chrobak, K.M., Potter, D.R., Tien, J., 2006. Formation of perfused, functional microvascular tubes in vitro.
Microvascular research 71 (3), 185-196, Available at: http://www.ncbi.nlm.nih.gov/pubmed/16600313
[Accessed February 28, 2014].
Cuchiara, M.P., et al., 2010. Multilayer microfluidic PEGDA hydrogels. Biomaterials 31 (21), 5491-5497,
Available at: http://www.ncbi.nlm.nih.gov/pubmed/20447685 [Accessed February 24, 2014].
Cui, X., Boland, T., 2009. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials
30 (31), 6221-6227, Available at: http://www.ncbi.nlm.nih.gov/pubmed/19695697 [Accessed January 20, 2014].
Dagalakis, N., et al., 1980. Design of an artificial skin. Part III. Control of pore structure. Journal of biomedical
materials research 14 (4), 511-528, Available at: http://www.ncbi.nlm.nih.gov/pubmed/7400201 [Accessed
July 1, 2014].
Duan, B., et al., 2013. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. Journal
of biomedical materials research. Part A 101 (5), 1255-1264, Available at: http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=3694360&tool=pmcentrez&rendertype=abstract [Accessed January 30, 2014] .
Duan, B., et al., 2014. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human
valve interstitial cells. Acta biomaterialia 10 (5), 1836-1846, Available at: http://www.ncbi.nlm.nih.gov/
pubmed/24334142 [Accessed June 16, 2014].
Gaebel, R., et al., 2011. Patterning human stem cells and endothelial cells with laser printing for cardiac
regeneration. Biomaterials 32 (35), 9218-9230, Available at: http://www.ncbi.nlm.nih.gov/pubmed/21911255
[Accessed May 14, 2014].
Gauvin, R., et al., 2012. Microfabrication of complex porous tissue engineering scaffolds using 3D projection
stereolithography. Biomaterials 33 (15), 3824-3834, Available at: http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=3766354&tool=pmcentrez&rendertype=abstract [Accessed January 22, 2014] .
Search WWH ::




Custom Search