Biology Reference
In-Depth Information
is 2 while twofold decrease is 0.5. When converted to log 2
these values become 1 and −1, respectively, and 0 as a value for
not change.
17. Gehlenborg et al. [ 35 ] published a review for -omics analysis
providing a good overview of the range of visualization tools
available to deal with the interpretation of large dataset
obtained by high-throughput analyses, including iTRAQ.
Acknowledgements
This work has been supported by research grants from MICINN-
FEDER (BIO2008-2941 and BIO2011-29856-C02-02). MJME
acknowledges a grant from Fundación Caja Murcia-University of
Alicante. University of Alicante Proteomics Facility is a member of
Proteored (ISCIII). JCV acknowledges fi nancial support from Red
Temática de Investigación Cooperativa de Cáncer (RTICC).
References
1. Ross PL, Huang YN, Marchese JN et al
(2004) Multiplexed protein quantitation in
Saccharomyces cerevisiae using amine-reactive
isobaric tagging reagents. Mol Cell Proteomics
3:1154-1169
2. Casado-Vela J, Martínez-Esteso MJ, Rodriguez
E et al (2010) iTRAQ-based quantitative anal-
ysis of protein mixtures with large fold change
and dynamic range. Proteomics 10:343-347
3. Pierce A, Unwin RD, Evans CA et al (2008)
Eight-channel iTRAQ enables comparison of
the activity of six leukemogenic tyrosine
kinases. Mol Cell Proteomics 7:853-863
4. Jorrín JV, Maldonado AM, Castillejo MA
(2007) Plant proteome analysis: a 2006 update.
Proteomics 7:2947-2962
5. Jorrín-Novo JV, Maldonado AM, Echevarría-
Zomeño S et al (2009) Plant proteomics
update (2007-2008): second-generation pro-
teomic techniques, an appropriate experimental
design, and data analysis to fulfi ll MIAPE stan-
dards, increase plant proteome coverage and
expand biological knowledge. J Proteomics
72:285-314
6. Oeljeklaus S, Meyer HE, Warscheid B (2009)
Advancements in plant proteomics using
quantitative mass spectrometry. J Proteomics
72(3):545-554
7. Zieske LR (2006) A perspective on the use of
iTRAQ reagent technology for protein complex
and profi ling studies. J Exp Bot 57:
1501-1508
8. Owiti J, Grossmann J, Gehrig P et al (2011)
iTRAQ-based analysis of changes in the cassava
root proteome reveals pathways associated with
post-harvest physiological deterioration. Plant
J 67:145-156
9. Martínez-Esteso MJ, Casado-Vela J, Sellés-
Marchart S et al (2011) iTRAQ-based profi ling
of grape berry exocarp proteins during ripening
using a parallel mass spectrometric method.
Mol Biosyst 7:749-765
10. Yang Y, Qiang K, Owsiany C et al (2011)
Evaluation of different multidimensional
LC-MS/MS pipelines for isobaric tags for rela-
tive and absolute quantitation (iTRAQ)-based
proteomic analysis of potato tubers in response
to cold storage. J Proteome Res 10:
4647-4660
11. Reiland S, Grossmann J, Baerenfaller K et al
(2011) Integrated proteome and metabolite
analysis of the de- etiolation process in plastids
from rice (Oryza sativa L.). Proteomics
11:1751-1763
12. Lippert DN, Ralph SG, Phillips M et al (2009)
Quantitative iTRAQ proteome and comparative
transcriptome analysis of elicitor-induced
Norway spruce (Picea abies) cells reveals ele-
ments of calcium signaling in the early conifer
defense response. Proteomics 9:350-367
Search WWH ::




Custom Search