Chemistry Reference
In-Depth Information
one obtains
12 MN
k
k 2
ω k
π
(1)
γα
(1)
αγ
·
× δ ε α
ω k n k +
δ ε α
ω k ( n k +
1)
ε γ +
ε γ
MN
k
k 2
ω k
π
(1)
γα
(1)
αγ
=
·
12
× δ ω α γ +
ω k n k +
δ ω α γ
ω k ( n k +
1)
(171)
Now recalling Eq. (53) one obtains
R (1)
αβ,α β
MN
k
πD 2
12
k 2
ω k
=
αα ,γγ δ ω α γ +
ω k n k +
δ ω α γ
ω k ( n k +
1) δ β β
Q (1)
×
γ
δ αα
γ
β β,γγ δ ω β γ +
ω k n k +
δ ω β γ
ω k ( n k +
1 )
Q (1)
β )]
(172)
Q (1)
+
αβ,α β [ δ ( ω αα +
ω k )( n k +
1)
+
δ ( ω αα
ω k ) n k +
( α
where
β β /D 2
Q (1)
(1)
αα ·
(1)
αβ,α β
(173)
is a dimensionless combination that characterizes the spin. Next, it is convenient
to go over from summation to integration,
v 0
N
k
d 3 k
(2 π ) 3 ···
1
··· ⇒
(174)
where v 0 is the unit-cell volume. Using v 0 /M
v t k one can in-
troduce the characteristic frequency t and the corresponding energy E t of the
spin-phonon interaction
=
1 and ω k =
ρv t
1 / 4
ρv t
3 1 / 4
t
E t
(175)
Search WWH ::




Custom Search