Environmental Engineering Reference
In-Depth Information
15.
Fletcher, P., Coveney, P.V., Hughes, T.L., and Methven, C.M. (1994), Predicting the
quality and performance of oilfield cements using artificial neural networks and FTIR
spectroscopy, Society of Petroleum Engineers, SPE 28824.
16.
Bhatty, J.I. and West, P.B. (1996), Stabilization of heavy metals in Portland cement
matrix: effects on paste properties, in Stabilization and Solidification of Hazardous,
Radioactive and Mixed Wastes: 3rd Volume , ASTM STP 1240, T. Michael Gilliam
and Carlton C. Wiles, Eds., American Society for Testing and Materials.
17.
Barret, P., Bertrandie, D., Casabonnemasonnave, J.M., and Damidot, D. (1992), Short-
term processes of radionuclide immobilization in cement — a chemical approach,
applied geochemistry supplement 1 , pp. 109-124.
18.
Lea, F.M. (1971), The Chemistry of Cement and Concrete , Chemical Publishing
Company, Inc., New York.
19.
Lieber, W. (1973), Wirkung anorganischer Zusätze auf das Erstarren und Erhärten
von Portland zement, Zement-Kalk-Gips, 2, pp. 75-79.
20.
Polettini, A. and Pomi, R. (2003), Modelling heavy metal and anion effects on
physical and mechanical properties of Portland cement by means of factorial exper-
iments, Environmental Technology , 24, 2, pp. 231-239.
21.
Cartledge, F.K. (1993), Solidification/Stabilization Interferences and Difficult Waste
Types , Gulf Coast Hazardous Substance Research Center, Beaumont, TX.
22.
Zamorani, E., Sheikh, I., and Serrini, G. (1989), A study of the influence of nickel
chloride on the physical characteristics and leachability of Portland cement, Cement
and Concrete Research , 19, pp. 259-266.
23.
Dumitru, G., Vazquez, T., Puertas, F., and Blanco-Varela, M.T. (2000), Influence of
BaCO3 on hydration of Portland cement, Materials and Construction , 49, 254, pp.
43-48.
24.
Fernandez Olmo, I., Chacon, E., and Irabien, A. (2001), Influence of lead, zinc, iron
(III) and chromium (III) oxides on the setting time and strength development of
Portland cement, Cement and Concrete Research , 31, 8, pp. 1213-1219.
25.
Malolepszy, J. and Deja, J., Effect of Heavy Metals Immobilization on Properties of
Alkali-Activated Slag Mortars, in Proceedings of the 5th International Conference
on the Use of Fly Ash, Silica Fume, Slag & Natural Pozzolans in Concrete , SP-153,
2, pp.1087-1102, Milwaukee, WI, 1995.
26.
Wastewater Technology Centre (1992), Engineering Properties Testing of Solidified
Residues , Report for Ontario Waste Management Corporation, Toronto, Ontario,
Canada.
27.
Malone, P.G., Poole, T.S., Wakeley, L.D., and Burkes, J.P. (1997), Salt-related expan-
sion reactions in Portland-cement-based wasteforms, Journal of Hazardous Materials ,
Volume 52, 2-3, pp. 237-246.
28.
Stegemann, J.A. and Buenfeld, N.R. (2002), Prediction of unconfined compressive
strength of cement paste with pure metal compound additions, Cement and Concrete
Research , 32, 6, pp. 903-913, 2002.
29.
Parker, T.W. (1954), The constitution of aluminous cement, 3rd International Sym-
posium on the Chemistry of Cement, London.
30.
Robson, T.D. (1967), High Alumina Cements and Concretes , John Wiley & Sons,
New York.
31.
Barret, P., Benes, C., Bertrandie, D., and Moisset, J. (1980), Comportement de divers
phosphates avec des constituants des ciments, in Proceedings of the 7th International
Congress on the Chemistry of Cement , Paris, 3, pp. 175-180.
Search WWH ::




Custom Search