Environmental Engineering Reference
In-Depth Information
57.
Boisson, J., M. Mench, J. Vangronsveld, A. Ruttens, P. Kopponen, and T. De Koe
(1999). “Immobilization of trace metals and arsenic by different soil additives: eval-
uation by means of chemical extraction.” Commu. Soil Sci. Plant Anal.
30 (3 - 4):365-387.
58.
Melamed, R., X. Cao, M. Chen, and L.Q. Ma (2003). “Field assessment of lead
immobilization in a contaminated soil after phosphate application.” Sci. Total Environ.
305: 117-127.
59.
Yang, J. et al. (2000). “Field treatment of phosphoric acid for in situ lead immobili-
zation in soil.” Abstracts of Papers of the American Chemical Society , March 26,
2000, v 219, pt 1, U732-U732.
60.
Stanforth, R. and J. Qiu (2001). “Effect of phosphate treatment on the solubility of
lead in contaminated soil.” Environ. Geol. 41(1-2):1-10.
61.
Yang, J. et al. (2001). “Lead immobilization using phosphoric acid in a smelter-
contaminated urban soil.” Environ. Sci. Technol. 35(17):3553-3559.
62.
Hodson, M.E., E. Valsami-Jones, J.D. and Cotter-Howells (2000). “Bonemeal addi-
tions as a remediation treatment for metal contaminated soil.” Environ. Sci. Technol.
34(16): 3501-3507.
63.
Hettiarachchi, G.M., G.M. Pierzynski, and M.D. Ransom (2000). “In situ stabilization
of soil lead using phosphorus and manganese oxide.” Environ. Sci. Technol. 34(21):
4614-4619.
64.
CotterHowells, J. and S. Caporn (1996). “Remediation of contaminated land by
formation of heavy metal phosphates.” Appl. Geochem. 11(1-2):335-342.
65.
Williams, B.C., S.L. McGeehan, and N. Ceto (2000). “Metals-fixation demonstrations
on the Coeur d'Alene River, Idaho — Final results.” 7th International Conference on
Tailings and Mine Waste.
66.
Leyva-Ramos, R., L.A. Bernal-Jacome, R.M. Guerrero-Coronado, and L. Fuentes-
Rubio (2001). “Competitive adsorption of Cd(II) and Zn(II) from aqueous solution
onto activated carbon.” Sep. Sci. Technol. 36(16):3673-3687.
67.
Duc, M., G. Lefevre, J. Jeanjean, J.C. Rouchaud, F. Monteil-Rivera, J. Dumonceau,
and S. Milonjic (2003). “Sorption of selenium anionic species on apatites and iron
oxides from aqueous solutions.” J. Environ. Radioact. 70(1-2):61-72.
68.
Monteil-Rivera, F., M. Fedoroff, J. Jeanjean, L. Minel, M. Barthes, and J. Dumonceau
(2000). “Sorption of selenite (SeO 3 2- ) on hydroxyapatite: an exchange process.”
J. Colloid Interface Sci. 221(2):291-300.
69.
Vukovic, Z., S. Lazic, I. Tutunovic, and S. Raicevic (1998). “On the mechanism of
strontium incorporation into calcium phosphates.” J. Serbian Chem. Soc.
63(5):387-393.
70.
Lazic, S. and Z. Vukovic (1991). “Ion-exchange of strontium on synthetic hydroxya-
patite.” J. Radioanal. Nucl. Chem. 149(1):161-168.
71.
Raicevic, S., I. Plecas, D.I. Lalovic, and V. Veljkovic (1999). “Optimization of immo-
bilization of strontium and uranium by the solid matrix.” Mater. Res. Soc. Symp. Proc.
556:135-142.
72.
Landa, E.R., A.H. Le, R.L. Luck, and P.J. Yeich (1995). “Sorption and coprecipitation
of trace concentrations of thorium with various minerals under conditions simulating
an acid uranium mill effluent environment.” Inorg. Chim. Acta 229:247-252.
73.
Hasan, M.A., C.A. Sanchez, R.C. Moore, A. Hasan, K. Holt, T. Headley, H. Zhao,
and F. Salas (2003). “Containment of uranium in the proposed Egyptian geologic
repository for radioactive waste using hydroxyapatite.” Sandia National Laboratories,
SAND2003-3104C.
Search WWH ::




Custom Search