Environmental Engineering Reference
In-Depth Information
42.
Badillo-Almarez, V.E., N. Toulhoat, P. Trocellier, and M. Jullien (2003). “Application
of microanalytical techniques to the study of aqueous ion sorption phenomena on
mineral surfaces.” Radiochim. Acta 91(8):487-493.
43.
Xu, Y., F. Schwartz, and S.J. Traina. (1994). “Sorption of Zn 2+ and Cd 2+ on hydroxya-
patite surface.” Environ. Sci. Technol. 28(8):1472-1480.
44a.
Ozawa, M., K. Satake, and R. Suzuki (2003). “Removal of aqueous chromium by
fish bone waste originated hydroxyapatite.” J. Mater. Sci. Lett. 22(7):513-514.
44b.
Ozawa, M., K. Satake, and S. Suzuki (2003). “Removal of aqueous manganese using
fish bone hydroxyapatite.” J. Mater. Sci. Lett. 22(19):1363-1364.
45.
Singh, D., A.S. Wagh, M. Tlustochowicz, and S.Y. Jeong (1998). “Phosphate ceramic
process for macroencapsulation and stabilization of low-level debris wastes.” Waste
Manage. 18:135-143.
46.
Bidoglio, G., P.N. Gibson, E. Haltier, and N. Omenetto (1992). “Xanes and laser
fluorescence spectroscopy for rare-earth speciation at mineral-water interfaces.” Radi-
ochim. Acta 58-59 pt. 1:191-197.
47a.
Seaman, J.C, J.S. Arey, and P.M. Bertsch (2001). “Immobilization of nickel and other
metals in contaminated sediments by hydroxyapatite addition.” J. Environ. Qual.
30(2):460.
47b.
Seaman, J.C., T. Meehan, and P.M. Bertsch (2001). “Immobilization of cesium-137
and uranium in contaminated sediments using soil amendments.” J. Environ. Qual.
30(4):1206-1213.
48.
Seaman, J.C., J.M. Hutchison, B.P. Jackson, and V.M. Vulva (2003). “In situ treatment
of contaminated soils with phytate.” J. Environ. Qual. 32(1):153-161.
49.
Sugiyama, H., T. Watanabe, and T. Hiarayama (2001). “Nitration of pyrene in metallic
oxides as soil components in the presence of indoor air, nitrogen, dioxide gas, nitrate
ion, or nitrate ion under zenon irridation.” J. Health Sci. 47(1):28-35.
50.
Deydier, E., R. Guilet, and P. Sharrock (2003). “Beneficial use of meat and bone
meal combustion residue: 'an efficient low cost material to remove lead from aqueous
effluent'.” J. Haz. Mater. 101(1):55-64.
51.
Mavropoulos, E., A.M. Rossi, A.M. Costa, C.A.C. Perez, J.C. Moriera, and M.
Saldanha (2002). “Studies on the mechanisms of lead immobilization by hydroxya-
patite.” Environ. Sci. Technol. 36:1625-1629.
52.
Eusden, J.J. Jr., D., L. Gallagher, T.T. Eighmy, B.S. Crannell, J.R. Krzanowski, L.G.
Butler, F.K. Carteledge, E.F. Emery, E.L. Shaw, and C.A. Francis (2002). ”Petro-
graphic and spectroscopic characterization of phosphate-stabilized mine tailings from
Leadville, Colorado.” Waste Manage. 22:117-135.
53.
Ma, Q.Y., T.J. Logan, S.J. Traina, and J.A. Ryan (1994). “Effects of aqueous Al, Cd,
Fe(II), Ni, and Zn on Pb immobilization by hydroxyapatite” Environ. Sci. Technol.
28(7):1219-1228.
54.
Ma, Q.Y., T.J. Logan, and S.J. Traina (1995). “Lead immobilization from aqueous
solutions and contaminated soils using phosphate rocks.” Environ. Sci. Technol.
29(4):1118-1126.
55.
Ma, L.Q., and G.N. Rao (1997). “Effects of phosphate rock on sequential chemical
extraction of lead in contaminated soils.” J. Environ. Qual. 26(3):788-794.
56.
Rao, A.J., K.R. Pagilla, and A.S. Wagh (2000). “Stabilization and solidification of
metal-laden wastes by compaction and magnesium phosphate-based binder.” J. Air
Waste Manage. Assoc. 50(9):1623-1631.
Search WWH ::




Custom Search