Information Technology Reference
In-Depth Information
L< 2 n− 1 , from Theorem 1 we know that for any two sequences S ,
For any 1
S ∈A
( L ), d H ( S , S )
4. Hence we have
A
( L )
(
A
( L )+ E t )=
,
(30)
A
( L )
(
A
( L )+ E i,j )=
,
and
(31)
(
A
( L )+ E t )
(
A
( L )+ E i,j )=
,
(32)
for all E t E 1 and E i,j E 2 .
We enumerate the disjoint sets in equation (29) and obtain the counting func-
tion when 1
L< 2 n− 2 using the fact that d H ( S , S )
8 from Theorem 1 for
any two sequences S , S ∈A
( L ).
Theorem 5. If w H (2 n
L< 2 n− 2 , then the sets
L )
A
( L ) ,
A
( L )+
3 and 1
E i , E i E 1 ,and A ( L )+ E i,j , E i,j E 2 , are disjoint and
N 2 ( L )= 2 n
2
+2 n +1 2 L− 1 .
We enumerate the disjoint sets in equation (29) and give the counting function
when 2 n− 1
L< 2 n .
Theorem 6. Let w H (2 n
L )
3 where
2 n
(2 n−r 1 +2 n−r 2 ) <L< 2 n
(2 n−r 1 +2 n−r 2 1 ) ,
(33)
for some r 1 ,r 2 satisfying 1 <r 1
r 2
n
1 . Define the sets
2 n−r 1 +1
D 1 ( L )=
{ E i :0
i
1
}
and
2 n−r 1 +1
D 2 ( L )=
{ E i,j :0
i<j
1
}
.
, 2 n−r 2
For u =0 ,
···
1 define the sets
1
1 { E i,i +2 n r 1 : i = u + t 2 n−r 2
D
u ( L )=
}
(34)
1 ≤t≤ 2 r 2 r 1
and
2 r 2 r 1
1
2
{ E i,j , E i,j +2 n r 1 : i = u + t 1 2 n−r 2 ,j = u + t 2 2 n−r 2
D
u ( L )=
}
.
(35)
t 2 =1
0 ≤t 1 <t 2
Consider the set
D
( L ) formed from sets in equations (6) , (34) ,and (35) by
2 n r 2
1
1
2
D
( L )=
D 2 ( L )
(
D
u ( L )
∪D
u ( L )) .
(36)
u =0
Then the sets
A
( L ) ,
A
( L )+ E i , E i D 1 ( L ) ,and
A
( L )+ E i,j , E i,j ∈D
( L ) ,are
disjoint. Furthermore,
N 2 ( L )= 2 n−r 1 +1
2
1) + 2 n−r 1 +1 +1 2 L− 1 .
2 n−r 2 (2 2 r 2 2 r 1
(37)
Search WWH ::




Custom Search