Chemistry Reference
In-Depth Information
73. Joselevich E (2008) Carbon nanotube synthesis and organization. In: Jorio A, Dresselhaus G,
Dresselhaus M (eds) Carbon nanotubes, 2nd edn. Springer, Berlin
74. Bolton K et al (2009) Density functional theory and tight binding-based dynamical studies of
carbon-metal systems of relevance to carbon nanotube growth. Nano Res 2(10):774-782
75. Gavillet J et al (2001) Root-growth mechanism for single-wall carbon nanotubes. Phys Rev
Lett 87(27):275504-(4)
76. Huang SM et al (2004) Growth mechanism of oriented long single walled carbon nanotubes
using “fast-heating” chemical vapor deposition process. Nano Lett 4(6):1025-1028
77. Li YM et al (2001) Growth of single-walled carbon nanotubes from discrete catalytic
nanoparticles of various sizes. J Phys Chem B 105(46):11424-11431
78. Helveg S et al (2004) Atomic-scale imaging of carbon nanofibre growth. Nature 427(6973):
426-429
79. Hofmann S et al (2007) In situ observations of catalyst dynamics during surface-bound
carbon nanotube nucleation. Nano Lett 7(3):602-608
80. Raty JY, Gygi F, Galli G (2005) Growth of carbon nanotubes on metal nanoparticles:
a microscopic mechanism from ab initio molecular dynamics simulations. Phys Rev Lett
95(9):096103-(4)
81. Abild-Pedersen F et al (2006) Mechanisms for catalytic carbon nanofiber growth studied by
ab initio density functional theory calculations. Phys Rev B 73(11):115419-(13)
82. Amara H et al (2009) Tight-binding potential for atomistic simulations of carbon interacting
with transition metals: application to the Ni-C system. Phys Rev B 79(1):014109-(17)
83. Ohta Y et al (2008) Rapid growth of a single-walled carbon nanotube on an iron cluster:
density-functional tight-binding molecular dynamics simulations. Acs Nano 2(7):1437-1444
84. Moors M et al (2009) Early stages in the nucleation process of carbon nanotubes. Acs Nano
3(3):511-516
85. Mueller JE, van Duin ACT, Goddard WA (2010) Application of the ReaxFF reactive force
field to reactive dynamics of hydrocarbon chemisorption and decomposition. J Phys Chem C
114(12):5675-5685
86. Mueller JE, van Duin ACT, Goddard WA (2010) Development and validation of ReaxFF
reactive force field for hydrocarbon chemistry catalyzed by nickel. J Phys Chem C 114(11):
4939-4949
87. Mora E et al (2008) Low-temperature single-wall carbon nanotubes synthesis: feedstock
decomposition limited growth. J Am Chem Soc 130(36):11840-11841
88. Hofmann S et al (2005) Surface diffusion: the low activation energy path for nanotube
growth. Phys Rev Lett 95(3):036101-(4)
89. Henkelman G, Jonsson H (2001) Long time scale kinetic Monte Carlo simulations without
lattice approximation and predefined event table. J Chem Phys 115(21):9657-9666
90. Jaramillo-Botero A et al (2010) Large-scale, long-term non-adiabatic electron molecular
dynamics for describing material properties and phenomena in extreme environments .
J Comput Chem. epub ahead of print.
91. Su JT, Goddard WA (2009) The dynamics of highly excited electronic systems: applications
of the electron force field. J Chem Phys 131(24):244501-(20)
92. Gillis HP et al (1995) Low-energy electron-enhanced etching of Si(100) in hydrogen helium
direct-current plasma. Appl Phys Lett 66(19):2475-2477
93. Su JT, Goddard WA (2009) Mechanisms of Auger-induced chemistry derived from wave
packet dynamics. Proc Natl Acad Sci U S A 106(4):1001-1005
94. Goddard W III (1998) Nanoscale theory and simulation: a critical driver for and a critical
challenge to commercial nanotechnology. In: WTEC workshop. World Technology Evalua-
tion Center, Arlington, VA
95. Jaramillo-Botero A et al (2008) Multiscale-multiparadigm modeling and simulation
of nanometer scale systems and processes for nanomedical applications. In: Zhang M,
Xi N (eds) Nanomedicine: a systems engineering approach. Pan Stanford Publishing,
Singapore
Search WWH ::




Custom Search