Chemistry Reference
In-Depth Information
47. Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and
significance for drug discovery (vol 7, p 339, 2008). Nat Rev Drug Discov 7(6):542
48. Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and
significance for drug discovery. Nat Rev Drug Discov 7(4):339-357
49. Kam VWT, Goddard WA (2008) Flat-bottom strategy for improved accuracy in protein
side-chain placements. J Chem Theory Comput 4(12):2160-2169
50. van Duin ACT et al (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A
105(41):9396-9409
51. Su JT, Goddard WA (2007) Excited electron dynamics modeling of warm dense matter. Phys
Rev Lett 99(18):185003
52. Strachan A et al (2005) Thermal decomposition of RDX from reactive molecular dynamics.
J Chem Phys 122(5):054502
53. van Duin ACT et al (2003) ReaxFF(SiO) reactive force field for silicon and silicon oxide
systems. J Phys Chem A 107(19):3803-3811
54. Han SS et al (2005) Optimization and application of lithium parameters for the reactive force
field, ReaxFF. J Phys Chem A 109(20):4575-4582
55. Zhang Q et al (2004) Adhesion and nonwetting-wetting transition in the Al/alpha-Al2O3
interface. Phys Rev B 69(4):045423-(11)
56. Nielson KD et al (2005) Development of the ReaxFF reactive force field for describing
transition metal catalyzed reactions, with application to the initial stages of the catalytic
formation of carbon nanotubes. J Phys Chem A 109(3):493-499
57. Cheung S et al (2005) ReaxFF(MgH) reactive force field for magnesium hydride systems.
J Phys Chem A 109(5):851-859
58. Chen N et al (2005) Mechanical properties of connected carbon nanorings via molecular
dynamics simulation. Phys Rev B 72(8):085416-(9)
59. Su HB et al (2007) Simulations on the effects of confinement and Ni-catalysis on the
formation of tubular fullerene structures from peapod precursors. Phys Rev B 75(13):
134107-(5)
60. Chenoweth K et al (2005) Simulations on the thermal decomposition of a poly(dimethylsi-
loxane) polymer using the ReaxFF reactive force field. J Am Chem Soc 127(19):7192-7202
61. Strachan A et al (2003) Shock waves in high-energy materials: the initial chemical events in
nitramine RDX. Phys Rev Lett 91(9):098301-(4)
62. van Duin ACT et al (2005) Atomistic-scale simulations of the initial chemical events in the
thermal initiation of triacetonetriperoxide. J Am Chem Soc 127(31):11053-11062
63. Buehler MJ, van Duin ACT, Goddard WA (2006) Multiparadigm modeling of dynamical
crack propagation in silicon using a reactive force field. Phys Rev Lett 96(9):095505-(4)
64. Goddard WA et al (2006) Development of the ReaxFF reactive force field for mechanistic
studies of catalytic selective oxidation processes on BiMoOx. Top Catal 38(1-3):93-103
65. Ludwig J et al (2006) Dynamics of the dissociation of hydrogen on stepped platinum surfaces
using the ReaxFF reactive force field. J Phys Chem B 110(9):4274-4282
66. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56-58
67. Endo M, Strano MS, Ajayan PM (2008) Potential applications of carbon nanotubes. Carbon
Nanotubes 111:13-61
68. Kreupl F (2008) Carbon nanotubes in microelectronic applications. In: Hierold C (ed)
Carbon nanotube devices, 2nd edn. Wiley VCH, Weinheim
69. Stampfer C (2008) Electromechanical carbon nanotube transducers. In: Hierold C (ed)
Carbon nanotube devices, 2nd edn. Wiley VCH, Weinheim
70. Roman C (2008) Modeling the properties of carbon nanotubes for sensor-based devices. In:
Hierold C (ed) Carbon nanotube devices, 2nd edn. Wiley VCH, Weinheim
71. Robertson J (2008) Carbon nanotube field emission devices. In: Hierold C (ed) Carbon
nanotube devices, 2nd edn. Wiley VCH, Weinheim
72. Yeow JT (2008) Carbon nanotube gas sensors. In: Hierold C (ed) Carbon nanotube devices,
2nd edn. Wiley VCH, Weinheim
Search WWH ::




Custom Search