Chemistry Reference
In-Depth Information
29. Kong CL (1973) Combining rules for intermolecular potential parameters. II. Rules for the
Lennard-Jones (12-6) potential and the Morse potential. J Chem Phys 59:2464-2467
30. Sikora PT (1970) Combining rules for spherically symmetric intermolecular potentials.
J Phys B 3:1475-1482
31. Waldman M, Hagler AT (1993) New combining rules for rare-gas van der Waals parameters.
J Comput Chem 14:1077-1084
32. Pe˜a MD, Pando C, Renuncio JAR (1982) Combination rules for intermolecular potential
parameters. I. Rules based on approximations for the long-range dispersion energy. J Chem
Phys 76:325-332
33. Pe˜a MD, Pando C, Renuncio JAR (1982) Combination rules for intermolecular potential
parameters. II. Rules based on approximations for the long-range dispersion energy and an
atomic distortion model for the repulsive interactions. J Chem Phys 76:333-339
34. Schnabel T, Vrabec J, Hasse H (2007) Unlike Lennard-Jones parameters for vapor-liquid
equilibria. J Mol Liq 135:170-178
35. Lorentz HA (1881) Uber die Anwendung des Satzes vom Virial in der kinetischen Theorie
der Gase. Ann Phys 12:127-136
36. Berthelot D (1889) Sur le M ´ lange des Gaz. C R Acad Sci 126:1703-1706
37. Delhommelle J, Milli ´ P (2001) Inadequacy of the Lorentz-Berthelot combining rules for
accurate predictions of equilibrium properties by molecular simulation. Mol Phys
99:619-625
38. Ungerer P, Wender A, Demoulin G et al (2004) Application of Gibbs ensemble and NPT
Monte Carlo simulation to the development of improved processes for H 2 S-rich gases. Mol
Simul 30:631-648
39. Huang YL, Miroshnichenko S, Hasse H et al (2009) Henry's law constant from molecular
simulation: a systematic study of 95 systems. Int J Thermophys 30:1791-1810
40. Huang YL, Vrabec J, Hasse H (2009) Prediction of ternary vapor-liquid equilibria for 33
systems by molecular simulation. Fluid Phase Equilib 287:62-69
41. Vrabec J, Huang YL, Hasse H (2009) Molecular models for 267 binary mixtures validated by
vapor-liquid equilibria: a systematic approach. Fluid Phase Equilib 279:120-135
42. Stone AJ (2008) Intermolecular potentials. Science 321:787-789
43. Murthy CS, Singer K, Klein ML et al (1983) Electrostatic interactions in molecular crystals.
Lattice dynamics of solid nitrogen and carbon dioxide. Mol Phys 50:531-541
44. Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley,
New York
45. Halgren TA, Damm W (2001) Polarizable force fields. Curr Opin Struct Biol 11:236-242
46. Rick SW, Stuart SJ (2002) Potentials and algorithms for incorporating polarizability in
computer simulations. In: Lipowitz DB, Boyd DB (eds) Review in computational chemistry.
Wiley-VCH, New York
47. Yu H, van Gunsteren WF (2005) Accounting for polarization in molecular simulation.
Comput Phys Commun 172:69-85
48. Dang LX, Rice JE, Caldwell J et al (1991) Ion solvation in polarizable water: molecular
dynamics simulations. J Am Chem Soc 113:2481-2486
49. Rick SW, Stuart SJ, Berne BJ (1994) Dynamical fluctuating charge force fields: application
to liquid water. J Chem Phys 101:6141-6157
50. Rigby M, Smith EB, Wakeham WA et al (1986) The forces between molecules. Clarendon
Press, Oxford
51. Simons G, Parr RG, Finlan JM (1973) New alternative to the Dunham potential for diatomic
molecules. J Chem Phys 59:3229-3234
52. Morse PM (1929) Diatomic molecules according to the wave mechanics. II. Vibrational
levels. Phys Rev 34:57-64
53. Hunenberger PH, van Gunsteren WF (1997) Empirical classical interaction functions for
molecular simulation. In: van Gunsteren WF, Weiner PK, Wilkinson AJ (eds) Computer
simulation of biomolecular systems: theoretical and experimental applications. Kluwer
Academic, Dordrecht
Search WWH ::




Custom Search