Chemistry Reference
In-Depth Information
4. Rhodes CL (1996) The process simulation revolution: thermophysical property needs and
concerns. J Chem Eng Data 41:947-950
5. Sandler SI (1994) Thermophysical properties: what have we learned recently, and what do
we still need to know? Int J Thermophys 15:1013-1035
6. Zeck S, Wolf D (1993) Requirements of thermodynamic data in the chemical industry. Fluid
Phase Equilib 82:27-38
7. Poling BE, Prausnitz JM, O'Connell JP (2000) The properties of gases and liquids, 5th edn.
McGraw Hill, New York
8. Gubbins KE, Quirke N (1996) Introduction to molecular simulation and industrial applica-
tions: methods, examples and prospects. In: Gubbins KE, Quirke N (eds) Molecular simula-
tions and industrial applications. Gordon and Breach Science Publishers, Amsterdam
9. Maginn EJ, Elliot JR (2010) Historical perspective and current outlook for molecular
dynamics as a chemical engineering tool. Ind Eng Chem Res 49:3059-3078
10. Friesner RA (2005) Ab initio quantum chemistry: methodology and applications. Proc Natl
Acad Sci USA 102:6648-6653
11. Allen MP, Tildesley DJ (1997) Computer simulation of liquids. Clarendon Press, Oxford
12. Burkert U, Allinger NL (1982) Molecular mechanics, ACS monograph 177. American
Chemical Society, Washington, DC
13. Stone AJ (1996) The theory of intermolecular forces. Clarendon Press, Oxford
14. Mie G (1903) Zur kinetischen Theorie der einatomigen Korper. Ann Phys 11:657-697
15. Horsch M, Vrabec J, Hasse H (2008) Modification of the classical nucleation theory based on
molecular simulation data for surface tension, critical nucleus size, and nucleation rate. Phys
Rev E 78:011603
16. Horsch M, Vrabec J (2009) Grand canonical steady-state simulation of nucleation. J Chem
Phys 131:184104
17. Kihara T (1951) The second virial coefficient of non-spherical molecules. J Phys Soc Jpn
6:289-296
18. Errington JR, Panagiotopoulos AZ (1999) A new intermolecular potential model for the
n-alkane homologous series. J Phys Chem B 103:6314-6322
19. Leach AR (2001) Molecular modelling principles and applications, 2nd edn. Pearson
Education, Edinburgh
20. Cabaleiro-Lago EM, Rios MA (1997) A potential function for intermolecular interaction in
the acetonitrile dimer constructed from ab initio data. J Phys Chem A 101:8327-8334
21. Eggenberger R, Gerber S, Huber H et al (1994) A new ab initio potential for the neon
dimer and its application in molecular dynamics simulations of the condensed phase. Mol
Phys 82:689-699
22. Grochola G, Russo S, Snook I (1998) An ab initio pair potential for Ne 2 and the equilibrium
properties of neon. Mol Phys 95:471-475
23. Hellmann R, Bich E, Vogel E (2007) Ab initio potential energy curve for the helium atom
pair and thermophysical properties of dilute helium gas. I. Helium-helium interatomic
potential. Mol Phys 105:3013-3023
24. Hloucha M, Sum AK, Sandler SI (2000) Computer simulation of acetonitrile and methanol
with ab initio -based pair potentials. J Chem Phys 113:5401-5406
25. Tang KT, Toennies JP (1980) An improved simple model for the van der Waals potential
based on universal damping functions for the dispersion coefficients. J Chem Phys
80:3726-3741
26. Al-Matar AK, Rockstraw D (2004) A generating equation for mixing rules and two new
mixing rules for interatomic potential energy parameters. J Comput Chem 25:660-668
27. Fender BEF, Halsey GD (1962) Second virial coefficients of argon, krypton, and argon-
krypton mixtures at low temperatures. J Chem Phys 36:1881-1888
28. Halgren TA (1992) The representation of van der Waals (vdW) interactions in molecular
mechanics force fields: potential form, combination rules, and vdW parameters. J Am Chem
Soc 114:7827-7843
Search WWH ::




Custom Search