Biology Reference
In-Depth Information
37. Rausch C, Weber T, Kohlbacher O, Wohlleben W, Huson DH. Specificity prediction of adenylation domains
in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs).
Nucleic Acids Res . 2005;33:5799
5808.
38. Rottig M, Medema MH, Blin K, Weber T, Rausch C, Kohlbacher O. NRPSpredictor2
a web server for
predicting NRPS adenylation domain specificity. Nucleic Acids Res . 2011;39:W362
367.
39. Caboche S, Pupin M, Leclere V, Fontaine A, Jacques P, Kucherov G. NORINE: a database of nonribosomal
peptides. Nucleic Acids Res . 2008;36:D326
331.
40. Yadav G, Gokhale RS, Mohanty D. Computational approach for prediction of domain organization and
substrate specificity of modular polyketide synthases. J Mol Biol . 2003;328:335
363.
41. Yadav G, Gokhale RS, Mohanty D. SEARCHPKS: a program for detection and analysis of polyketide synthase
domains. Nucleic Acids Res . 2003;31:3654
3658.
42. Udwary DW, Merski M, Townsend CA. A method for prediction of the locations of linker regions within large
multifunctional proteins, and application to a type I polyketide synthase. J Mol Biol . 2002;323:585
598.
43. Tae H, Kong EB, Park K. ASMPKS: an analysis system for modular polyketide synthases. BMC Bioinformatics .
2007;8:327.
44. Mallika V, Sivakumar KC, Jaichand S, Soniya EV. Kernel based machine learning algorithm for the efficient
prediction of type III polyketide synthase family of proteins. J Integr Bioinform . 2010;7:143.
45. Anand S, Prasad MV, Yadav G, et al. SBSPKS: structure based sequence analysis of polyketide synthases.
Nucleic Acids Res . 2010;38:W487 496.
46. Ansari MZ, Yadav G, Gokhale RS, Mohanty D. NRPS-PKS: a knowledge-based resource for analysis of
NRPS/PKS megasynthases. Nucleic Acids Res . 2004;32:W405 413.
47. Starcevic A, Zucko J, Simunkovic J, Long PF, Cullum J, Hranueli D. ClustScan: an integrated program package
for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel
chemical structures. Nucleic Acids Res . 2008;36:6882
6892.
48. Weber T, Rausch C, Lopez P, et al. CLUSEAN: a computer-based framework for the automated analysis of
bacterial secondary metabolite biosynthetic gene clusters. J Biotechnol . 2009;140:13
17.
49. Li MH, Ung PM, Zajkowski J, Garneau-Tsodikova S, Sherman DH. Automated genome mining for natural
products. BMC Bioinformatics . 2009;10:185.
50. Bachmann BO, Ravel J. Methods for in silico prediction of microbial polyketide and nonribosomal peptide
biosynthetic pathways from DNA sequence data. Methods Enzymol . 2009;458:181
201
217.
51. de Jong A, van Heel AJ, Kok J, Kuipers OP. BAGEL2: mining for bacteriocins in genomic data. Nucleic Acids Res .
2011;38:W647
651.
52. Khaldi N, Seifuddin FT, Turner G, et al. SMURF: genomic mapping of fungal secondary metabolite clusters.
Fungal Genet Biol . 2010;47:736
741.
53. Medema MH, Blin K, Cimermancic P, et al. antiSMASH: rapid identification, annotation and analysis of
secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res .
2011;39:W339 346.
54. Lee SY, Hong SH, Moon SY. In silico metabolic pathway analysis and design: succinic acid production by
metabolically engineered Escherichia coli as an example. Genome Inform . 2002;13:214 223.
55. Burgard AP, Pharkya P, Maranas CD. Optknock: a bilevel programming framework for identifying gene
knockout strategies for microbial strain optimization. Biotechnol Bioeng . 2003;84:647 657.
56. Pharkya P, Burgard AP, Maranas CD. OptStrain: a computational framework for redesign of microbial
production systems. Genome Res . 2004;14:2367 2376.
57. Pharkya P, Maranas CD. An optimization framework for identifying reaction activation/inhibition or
elimination candidates for overproduction in microbial systems. Metab Eng . 2006;8:1 13.
58. Ranganathan S, Suthers PF, Maranas CD. OptForce: an optimization procedure for identifying all genetic
manipulations leading to targeted overproductions. PLoS Comput Biol . 2010;6:e1000744.
59. Hadicke O, Klamt S. CASOP: a computational approach for strain optimization aiming at high productivity.
J Biotechnol . 2010;147:88
101.
60. Kim J, Reed JL. OptORF: optimal metabolic and regulatory perturbations for metabolic engineering of
microbial strains. BMC Syst Biol . 2010;4:53.
61. Rocha I, Maia P, Evangelista P, et al. OptFlux: an open-source software platform for in silico metabolic
engineering. BMC Syst Biol . 2010;4:45.
62. Salis HM, Mirsky EA, Voigt CA. Automated design of synthetic ribosome binding sites to control protein
expression. Nat Biotechnol . 2009;27:946
950.
63. Welch M, Villalobos A, Gustafsson C, Minshull J. Designing genes for successful protein expression.
Methods Enzymol . 2011;498:43
66.
Search WWH ::




Custom Search