Biomedical Engineering Reference
In-Depth Information
38. Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and
disease. Biochem J 219:1-14
39. Hong R, Kang TY, Michels CA, Gadura N (2012) Membrane lipid peroxidation in copper
alloy-mediated contact killing of Escherichia coli . Appl Environ Microbiol 78:1776-1784
40. Huheey J, Keiter E, Keiter R, Medhi O (1993) Chapter 2 - The structure of the atom.
In: Piro J (ed) Inorganic chemistry: principles of structure and reactivity, 4th edn.
HarperCollins College Publishers, New York
41. Hyde SM, Verdin D (1968) Oxidation of methyl oleate induced by 60Co
γ
-radiation. Part
1. - Pure methyl oleate. Trans Faraday Soc 64:144
42. Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240:1302-1309
43. Karlin KD (1993) Metalloenzymes, structural motifs, and inorganic models. Science
261:701-708
44. Karpanen TJ, Casey AL, Lambert PA, Cookson BD, Nightingale P, Miruszenko L, Elliott TSJ
(2012) The antimicrobial efficacy of copper alloy furnishing in the clinical environment: a
crossover study. Infect Control Hosp Epidemiol 33:3-9
45. Kim JH, Cho H, Ryu SE, Choi MU (2000) Effects of metal ions on the activity of protein
tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu 2+ ion.
Arch Biochem Biophys 382:72-80
46. Kochi JK (1962) The mechanism of the copper salt catalysed reactions of peroxides. Tetrahe-
dron 18:483-497
47. Kramer A, Schwebke I, Kampf G (2006) How long do nosocomial pathogens persist on
inanimate surfaces? A systematic review. BMC Infect Dis 6:130
48. Kuhn PJ (1983) Doorknobs: a source of nosocomial infection? Diagn Med 6(8):62-63
49. Liochev SI, Fridovich I (2002) The Haber-Weiss cycle - 70 years later: an alternative view.
Redox Rep 7:55-57, author reply 59-60
50. Macomber L, Imlay JA (2009) The iron-sulfur clusters of dehydratases are primary intracel-
lular targets of copper toxicity. Proc Natl Acad Sci U S A 106:8344-8349
51. Macomber L, Rensing C, Imlay JA (2007) Intracellular copper does not catalyze the formation
of oxidative DNA damage in Escherichia coli . J Bacteriol 189:1616-1626
52. Marais F, Mehtar S, Chalkley L (2010) Antimicrobial efficacy of copper touch surfaces in
reducing environmental bioburden in a South African community healthcare facility. J Hosp
Infect 74:80-82
53. Mathews S, Hans M, M¨cklich F, Solioz M (2013) Contact killing of bacteria on copper is
suppressed if bacterial-metal contact is prevented and is induced on iron by copper ions. Appl
Environ Microbiol 79:2605-2611
54. Mehtar S, Wiid I, Todorov SD (2008) The antimicrobial activity of copper and copper alloys
against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare
facilities in the Western Cape: an in-vitro study. J Hosp Infect 68:45-51
55. Mermod M, Magnani D, Solioz M, Stoyanov JV (2012) The copper-inducible ComR (YcfQ)
repressor regulates expression of ComC (YcfR), which affects copper permeability of the outer
membrane of Escherichia coli . Biometals 25:33-43
56. Metzler D (2003) Chapter 16 - Transition metals in catalysis and electron transport.
In: Hayhurst J (ed) Biochemistry: the chemical reactions of living cells (Volume 1 and 2),
2nd edn. Academic, San Diego
57. Michels HT, Noyce JO, Keevil CW (2009) Effects of temperature and humidity on the efficacy
of methicillin-resistant Staphylococcus aureus challenged antimicrobial materials containing
silver and copper. Lett Appl Microbiol 49:191-195, Blackwell Publishing Ltd
58. Michels HT, Wilks SA, Keevil CW (2003) The antimicrobial effects of copper alloy surfaces
on the bacterium, E. coli 0157:H7. In: Lagos GE, Sahoo M, Camus J (eds) Proceedings
of Copper 2003 - Cobre 2003, the 5th international conference, Santiago, pp 439-450
59. Michels HT, Wilks SA, Keevil CW (2004) Effects of copper alloy surfaces on the viability of
bacterium, E. coli O157:H7. In: Hygenic coatings & surfaces. The Paint Research Association,
Teddington
Search WWH ::




Custom Search