Biomedical Engineering Reference
In-Depth Information
60. Mikolay A, Huggett S, Tikana L, Grass G, Braun J, Nies DH (2010) Survival of bacteria on
metallic copper surfaces in a hospital
trial. Appl Microbiol Biotechnol 87:1875-1879,
Springer, Berlin/ Heidelberg
61. Molteni C, Abicht HK, Solioz M (2010) Transition Metals in Catalysis and Electron Transport.
Killing of bacteria by copper surfaces involves dissolved copper. Appl Environ Microbiol
76:4099-4101, American Society for Microbiology (ASM)
62. Munson GP, Lam DL, Outten FW, O'Halloran TV (2000) Identification of a copper-
responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol
182:5864-5871
63. Nandakumar R, Esp ´ rito Santo C, Madayiputhiya N, Grass G (2011) Quantitative proteomic
profiling of the Escherichia coli response to metallic copper surfaces. Biometals 24:429-444
64. Nilsson L, Oliver JD, Kjelleberg S (1991) Resuscitation of Vibrio vulnificus from the viable
but nonculturable state. J Bacteriol 173:5054-5059
65. Noyce JO, Michels H, Keevil CW (2006) Use of copper cast alloys to control Escherichia coli
O157 cross-contamination during food processing. Appl Environ Microbiol 72:4239-4244,
American Society for Microbiology
66. Noyce JO, Michels H, Keevil CW (2006) Potential use of copper surfaces to reduce survival of
epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment. J Hosp
Infect 63:289-297, The Hospital Infection Society
67. Noyce JO, Michels H, Keevil CW (2007) Inactivation of influenza A virus on copper versus
stainless steel surfaces. Appl Environ Microbiol 73:2748-2750, American Society for
Microbiology
68. Ochiai E-I (1986) Iron versus copper, II: principles and applications in bioinorganic chemistry.
J Chem Educ 63:942
69. Odermatt A, Suter H, Krapf R, Solioz M (1992) An ATPase operon involved in copper
resistance by Enterococcus hirae. Ann N Y Acad Sci 671:484-486
70. Osman D, Waldron KJ, Denton H, Taylor CM, Grant AJ, Mastroeni P, Robinson NJ, Cavet JS
(2010) Copper homeostasis in Salmonella is atypical and copper-CueP is a major periplasmic
metal complex. J Biol Chem 285:25259-25268
71. Outten FW, Huffman DL, Hale JA, O'Halloran TV (2001) The independent cue and cus
systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli .
J Biol Chem 276:30670-30677
72. Quaranta D, Krans T, Esp´rito Santo C, Elowsky CG, Domaille DW, Chang CJ, Grass G
(2011) Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces.
Appl Environ Microbiol 77:416-426
73. Raimunda D, Gonz´lez-Guerrero M, Leeber BW, Arg¨ello JM (2011) The transport mecha-
nism of bacterial Cu +
ATPases: distinct efflux rates adapted to different function. Biometals
24:467-475
74. Reardon AC (2011) Discovering metals : a historical overview. In: Reardon AC
(ed) Metallurgy for the non-metallurgist, 2nd edn. ASM International, Materials Park
75. Rensing C, Fan B, Sharma R, Mitra B, Rosen BP (2000) CopA: an Escherichia coli Cu(I)-
translocating P-type ATPase. Proc Natl Acad Sci U S A 97:652-656
76. Repetto M, Semprine J, Boveris A (2012) Chemical mechanism, biological implications and
analytical determination. In: Catala A (ed) Lipid peroxidation. InTech, Rijeka, pp 3-30.
doi: 10.5772/45943
77. Salgado CD, Sepkowitz KA, John JF, Cantey JR, Attaway HH, Freeman KD, Sharpe PA,
Michels HT, Schmidt MG (2013) Copper surfaces reduce the rate of healthcare-acquired
infections in the intensive care unit. Infect Control Hosp Epidemiol 34:479-486
78. Schaich KM (2005) Lipid oxidation: theoretical aspects. In: Shahidi F (ed) Bailey's industrial
oil and fat products, vol 6, 6th edn. Wiley, Hoboken, pp 269-355
79. Singh SK, Grass G, Rensing C, Montfort WR (2004) Cuprous oxidase activity of CueO from
Escherichia coli . J Bacteriol 186:7815-7817
80. Solioz M, Odermatt A (1995) Copper and silver transport by CopB-ATPase in membrane
vesicles of Enterococcus hirae . J Biol Chem 270:9217-9221
Search WWH ::




Custom Search