Biology Reference
In-Depth Information
[26] Klitgord N, Segre D. The importance of compartmentalization in
metabolic flux models: yeast as an ecosystem of organelles.
Genome Inform 2010;22:41 e 55.
[27] Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K,
Chetvernin V, et al. Database resources of the national center for
biotechnology information. Nucleic Acids Res 2007;35:D5 e 12.
[28] Mintz-Oron S, Aharoni A, Ruppin E, Shlomi T. Network-based
prediction of metabolic enzymes' subcellular localization. Bio-
informatics 2009;25:i247 e 52.
[29] Feist AM, Palsson BO. The biomass objective function. Curr Opin
Microbiol 2010;13(3):344 e 9.
[30] Neidhardt FC, Ingraham JL, Schaechter M. Physiology of the
Bacterial Cell: A Molecular Approach. Sunderland, MA, USA:
Sinauer Associates; 1990.
[31] Izard J, Limberger RJ. Rapid screening method for quantitation of
bacterial cell lipids from whole cells. J Microbiol Methods
2003;55:411 e 8.
[32] Benthin S, Nielsen J, Villadsen J. A simple and reliable method
for the determination of cellular RNA content. Biotechnol Tech
1991;5:39 e 42.
[33] Norris JR, Ribbons DW. Editors: Methods in microbiology.
Volume 5. Academic Press, London; 1971
[34] Liao YC, Huang TW, Chen FC, Charusanti P, Hong JS,
Chang HY, et al. An experimentally validated genome-scale
metabolic reconstruction of klebsiella pneumoniae MGH 78578,
iYL1228. J Bacteriol 2011;193:1710 e 7.
[35] Peterson JD, Umayam LA, Dickinson T, Hickey EK, White O.
The comprehensive microbial resource. Nucleic Acids Res 2001;
29:123 e 5.
[36] Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR,
Karp PD, et al. A genome-scale metabolic reconstruction for
escherichia coli K-12 MG1655 that accounts for 1260 ORFs and
thermodynamic information. Mol Syst Biol 2007;3:121.
[37] Kauffman KJ, Prakash P, Edwards JS. Advances in flux balance
analysis. Curr Opin Biotechnol 2003;14:491 e 6.
[38] Reed JL, Patel TR, Chen KH, Joyce AR, Applebee MK,
Herring CD, et al. Systems approach to refining genome anno-
tation. Proc Natl Acad Sci USA 2006;103:17480 e 4.
[39] Satish Kumar V, Dasika MS, Maranas CD. Optimization based
automated curation of metabolic reconstructions. BMC Bio-
informatics 2007;8:212.
[40] Orth JD, Palsson BO. Systematizing the generation of missing
metabolic knowledge. Biotechnol Bioeng 2010;107:403 e 12.
[41] Schilling CH, Letscher D, Palsson BO. Theory for the systemic
definition of metabolic pathways and their use in interpreting
metabolic function from a pathway-oriented perspective. J Theor
Biol 2000;203:229 e 48.
[42] Price ND, Thiele I, Palsson BO. Candidate states of helicobacter
pylori's genome-scale metabolic network upon application of
'loop law' thermodynamic constraints. Biophys J 2006;90(11):
3919 e 28.
[43] Bell SL, Palsson BO. Expa: A program for calculating extreme
pathways in biochemical reaction networks. Bioinformatics 2005;21:
1739 e 40.
[44] YeungM, Thiele I, Palsson BO. Estimation of the number of extreme
pathways for metabolic networks. BMC Bioinformatics 2007;8:363.
[45] Gudmundsson S, Thiele I. Computationally efficient flux vari-
ability analysis. BMC Bioinformatics 2010;11:489.
[46] Schellenberger J, Lewis NE, Palsson BO. Elimination of ther-
modynamically infeasible loops in steady-state metabolic models.
Biophys J 2011;100:544 e 53.
[47] Henry CS, Broadbelt LJ, Hatzimanikatis V. Thermodyna-
mics-based metabolic flux analysis. Biophys J 2007;92:
1792 e 805.
[48] Hoppe A, Hoffmann S, Holzhutter HG. Including metabolite
concentrations into flux balance analysis: thermodynamic realiz-
ability as a constraint on flux distributions in metabolic networks.
BMC Syst Biol 2007;1:23.
[49] Bochner BR, Gadzinski P, Panomitros E. Phenotype microarrays
for high-throughput phenotypic testing and assay of gene func-
tion. Genome Res 2001;11:1246 e 55.
[50] Loomis Jr WF, Magasanik B. Glucose-lactose diauxie in escher-
ichia coli. J Bacteriol 1967;93:1397 e 401.
[51] Edwards JS, Ibarra RU, Palsson BO. In silico predictions of
escherichia coli metabolic capabilities are consistent with
experimental data. Nat Biotechnol 2001;19:125 e 30.
[52] Famili I, Forster J, Nielsen J, Palsson BO. Saccharomyces
cerevisiae phenotypes can be predicted by using constraint-
based analysis of a genome-scale reconstructed metabolic
network. Proc Natl Acad Sci USA 2003;100:13134 e 9.
[53] Segre D, Vitkup D, Church GM. Analysis of optimality in natural
and perturbed metabolic networks. Proc Natl Acad Sci USA
2002;99:15112 e 7.
[54] Burgard AP, Maranas CD. Optimization-based framework for
inferring and testing hypothesized metabolic objective functions.
Biotechnol Bioeng 2003;82:670 e 7.
[55] Schuetz R, Kuepfer L, Sauer U. Systematic evaluation of objec-
tive functions for predicting intracellular fluxes in escherichia
coli. Mol Syst Biol 2007;3:119.
[56] Gianchandani EP, Oberhardt MA, Burgard AP, Maranas CD,
Papin JA. Predicting biological system objectives de novo
from internal state measurements. BMC Bioinformatics 2008;
9:43.
[57] Knorr AL, Jain R, Srivastava R. Bayesian-based selection of
metabolic objective functions. Bioinformatics 2007;23:351 e 7.
[58] Holzhutter HG. The principle of flux minimization and its
application to estimate stationary fluxes in metabolic networks.
Eur J Biochem 2004;271:2905 e 22.
[59] Shlomi T, Berkman O, Ruppin E. Regulatory on/off minimization
of metabolic flux changes after genetic perturbations. Proc
Natl Acad Sci USA 2005;102:7695 e 700.
[60] Schuster S, Pfeiffer T, Fell DA. Is maximization of molar yield in
metabolic networks favoured by evolution? J Theor Biol 2008;
252:497 e 504.
[61] Palsson B Ø. Adaptive laboratory evolution. Microbe 2011;6(2):
69 e 74 (2011).
[62] Fong SS, Palsson BO. Metabolic gene-deletion strains of
escherichia coli evolve to computationally predicted growth
phenotypes. Nat Genet 2004;36:1056 e 8.
[63] Ibarra RU, Edwards JS, Palsson BO. Escherichia coli K-12
undergoes adaptive evolution to achieve in silico predicted
optimal growth. Nature 2002;420:186 e 9.
[64] Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H,
et al. The systems biology markup language (SBML): a medium
for representation and exchange of biochemical network models.
Bioinformatics 2003;19:524 e 31.
Search WWH ::




Custom Search