Biology Reference
In-Depth Information
[65] Rocha I, Maia P, Evangelista P, Vilaca P, Soares S, Pinto JP, et al.
OptFlux: An open-source software platform for in silico meta-
bolic engineering. BMC Syst Biol 2010;4:45.
[66] Klamt S, Saez-Rodriguez J, Gilles ED. Structural and functional
analysis of cellular networks with CellNetAnalyzer. BMC Syst
Biol 2007;1:2.
[67] Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO,
Herrgard MJ. Quantitative prediction of cellular metabolism with
constraint-based models: the COBRA toolbox. Nat Protoc 2007;2:
727 e 38.
[68] Gevorgyan A, Bushell ME, Avignone-Rossa C, Kierzek AM.
SurreyFBA: a command line tool and graphics user interface for
constraint-based modeling of genome-scale metabolic reaction
networks. Bioinformatics 2011;27:433 e 4.
[69] Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM,
et al. Quantitative prediction of cellularmetabolismwith constraint-
based models: the COBRA toolbox v2.0. Nat Protoc 2011;6:
1290 e 307.
[70] Edwards JS, Palsson BO. The escherichia coli MG1655 in silico
metabolic genotype: its definition, characteristics, and capabilities.
Proc Natl Acad Sci USA 2000;97:5528 e 33.
[71] Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, et al. A
comprehensive genome-scale reconstruction of escherichia coli
metabolism e 2011. Mol Syst Biol 2011;7:535.
[72] Forster J, Famili I, Fu P, Palsson BO, Nielsen J. Genome-
scale reconstruction of the saccharomyces cerevisiae metabolic
network. Genome Res 2003;13:244 e 53.
[73] Duarte NC, Herrgard MJ, Palsson BO. Reconstruction and
validation of saccharomyces cerevisiae iND750, a fully com-
partmentalized genome-scale metabolic model. Genome Res
2004;14:1298 e 309.
[74] Nookaew I, Jewett MC, Meechai A, Thammarongtham C,
Laoteng K, Cheevadhanarak S, et al. The genome-scale metabolic
model iIN800 of saccharomyces cerevisiae and its validation:
a scaffold to query lipid metabolism. BMC Syst Biol 2008;2:71.
[75] Feist AM, Palsson BO. The growing scope of applications of
genome-scale metabolic reconstructions using escherichia coli.
Nat Biotechnol 2008;26:659 e 67.
[76] Oberhardt MA, Palsson BO, Papin JA. Applications of genome-
scale metabolic reconstructions. Mol Syst Biol 2009;5:320.
[77] Windass JD, WorseyMJ, Pioli EM, Pioli D, Barth PT, Atherton KT,
et al. Improved conversion of methanol to single-cell protein by
methylophilus methylotrophus. Nature 1980;287:396 e 401.
[78] Bailey JE, Birnbaum S, Galazzo JL, Khosla C, Shanks JV.
Strategies and challenges in metabolic engineering. Ann NYAcad
Sci 1990;589:1 e 15.
[79] Lewis NE, Nagarajan H, Palsson BO. Constraining the metabolic
genotype-phenotype relationship using a phylogeny of in silico
methods. Nat Rev Microbiol 2012;10:291 e 305.
[80] Medema MH, van Raaphorst R, Takano E, Breitling R. Compu-
tational tools for the synthetic design of biochemical pathways.
Nat Rev Microbiol 2012;10:191 e 202.
[81] Burgard AP, Pharkya P, Maranas CD. Optknock: a bilevel
programming framework for identifying gene knockout strategies for
microbial strain optimization. Biotechnol Bioeng 2003;84:647 e 57.
[82] Pharkya P, Burgard AP, Maranas CD. OptStrain: a computational
framework for redesign of microbial production systems. Genome
Res 2004;14:2367 e 76.
[83] Pharkya P, Burgard AP, Maranas CD. Exploring the over-
production of amino acids using the bilevel optimization frame-
work OptKnock. Biotechnol Bioeng 2003;84:887 e 99.
[84] Alper H, Jin YS, Moxley JF, Stephanopoulos G. Identifying gene
targets for the metabolic engineering of lycopene biosynthesis in
escherichia coli. Metab Eng 2005;7:155 e 64.
[85] Alper H, Miyaoku K, Stephanopoulos G. Construction of lyco-
pene-overproducing E. coli strains by combining systematic and
combinatorial gene knockout targets. Nat Biotechnol 2005;23:
612 e 6.
[86] Fong SS, Burgard AP, Herring CD, Knight EM, Blattner FR,
Maranas CD, et al. In silico design and adaptive evolution of
escherichia coli for production of lactic acid. Biotechnol Bioeng
2005;91:643 e 8.
[87] Pharkya P, Maranas CD. An optimization framework for identi-
fying reaction activation/inhibition or elimination candidates
for overproduction in microbial systems. Metab Eng 2006;8:1 e 13.
[88] Lee SJ, Lee DY, Kim TY, Kim BH, Lee J, Lee SY. Metabolic
engineering of escherichia coli for enhanced production of succinic
acid, based on genome comparison and in silico gene knockout
simulation. Appl Environ Microbiol 2005;71:7880 e 7.
[89] Wang Q, Chen X, Yang Y, Zhao X. Genome-scale in silico aided
metabolic analysis and flux comparisons of escherichia coli to
improve succinate production. Appl Microbiol Biotechnol 2006;
73:887 e 94.
[90] Park JH, Lee KH, et al. Metabolic engineering of escherichia coli
for the production of L-valine based on transcriptome analysis
and in silico gene knockout simulation. Proc Natl Acad Sci USA
2007;104:7797 e 802.
[91] Lee KH, Park JH, Kim TY, Kim HU, Lee SY. Systems meta-
bolic engineering of escherichia coli for L-threonine produc-
tion. Mol Syst Biol 2007;3:149.
[92] Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J,
et al. Metabolic engineering of escherichia coli for direct produc-
tion of 1,4-butanediol. Nat Chem Biol 2011;7:445 e 52.
[93] AdamP, Hecht S, EisenreichW, Kaiser J, Grawert T, Arigoni D, et al.
Biosynthesis of terpenes: studies on 1-hydroxy-2-methyl-2-(E)-
butenyl 4-diphosphate reductase. Proc Natl Acad Sci USA 2002;99:
12108 e 13.
[94] Beard DA, Liang SD, Qian H. Energy balance for analysis of
complex metabolic networks. Biophys J 2002;83:79 e 86.
[95] Samal A, Singh S, Giri V, Krishna S, Raghuram N, Jain S. Low
degree metabolites explain essential reactions and enhance modu-
larity in biological networks. BMC Bioinformatics 2006;7:118.
[96] Kummel A, Panke S, Heinemann M. Putative regulatory sites
unraveled by network-embedded thermodynamic analysis of
metabolome data. Mol Syst Biol 2006;2:2006.0034.
[97] Kummel A, Panke S, Heinemann M. Systematic assignment of
thermodynamic constraints in metabolic network models. BMC
Bioinformatics 2006;7:512.
[98] HenryCS, Broadbelt LJ, Hatzimanikatis V. Thermodynamics-based
metabolic flux analysis. Biophys J 2007;92:1792 e 805.
[99] Ederer M, Gilles ED. Thermodynamically feasible kinetic models
of reaction networks. Biophys J 2007;92:1846 e 57.
[100] Hoppe A, Hoffmann S, Holzhutter HG. Including metabolite
concentrations into flux balance analysis: thermodynamic realiz-
ability as a constraint on flux distributions in metabolic networks.
BMC Syst Biol 2007;1:23.
Search WWH ::




Custom Search