Biology Reference
In-Depth Information
[30] Spooner CJ, Cheng JX, Pujadas E, Laslo P, Singh H. A recurrent
network involving the transcription factors PU.1 and Gfi1 orchestrates
innate and adaptive immune cell fates. Immunity 2009;31:576 e 86.
[31] Chickarmane V, Enver T, Peterson C. Computational modeling of
the hematopoietic erythroid-myeloid switch reveals insights into
cooperativity, priming, and irreversibility. PLoS Comput Biol
2009;5:e1000268.
[32] Davidson EH. Evolutionary bioscience as regulatory systems
biology. Dev Biol 2011;357:35 e 40.
[33] Bolouri H, Davidson EH. The gene regulatory network basis of the
'community effect,' and analysis of a sea urchin embryo example.
Dev Biol 2010;340:170 e 8.
[34] Pimanda JE, Ottersbach K, Knezevic K, Kinston S, Chan WY,
Wilson NK, et al. Gata2, Fli1, and Scl form a recursively wired
gene-regulatory circuit during early hematopoietic development.
Proc Natl Acad Sci USA 2007;104:17692 e 7.
[35] Bolouri H. Computational Modeling of Gene Regulatory
Networks. London: Imperial College Press; 2008.
[36] Macarthur BD, Ma'ayan A, Lemischka IR. Systems biology of
stem cell fate and cellular reprogramming. Nat Rev Mol Cell Biol
2009;10:672 e 81.
[37] Kirouac DC, Ito C, Csaszar E, Roch A, Yu M, Sykes EA, et al.
Dynamic interaction networks in a hierarchically organized tissue.
Mol Syst Biol 2010;6:417.
[48] Howard-Ashby M, Materna SC, Brown CT, Tu Q, Oliveri P,
Cameron RA, et al. High regulatory gene use in sea urchin
embryogenesis: implications for bilaterian development and
evolution. Dev Biol 2006;300:27
34.
[49] Materna SC, Howard-Ashby M, Gray RF, Davidson EH. The C2H2
zinc finger genes of Strongylocentrotus purpuratus and their
expression in embryonic development. Dev Biol 2006;300:
108 e 20.
[50] Rizzo F, Fernandez-Serra M, Squarzoni P, Archimandritis A,
Arnone MI. Identification and developmental expression of the ets
gene family in the sea urchin (Strongylocentrotus purpuratus). Dev
Biol 2006;300:35 e 48.
[51] Tu Q, Brown CT, Davidson EH, Oliveri P. Sea urchin Forkhead
gene family: phylogeny and embryonic expression. Dev Biol
2006;300:49 e 62.
[52] Ben-Tabou de-Leon SB, Davidson EH. Information processing at
the foxa node of the sea urchin endomesoderm specification
network. Proc Natl Acad Sci USA 2010;107:10103 e 8.
[53] Peter IS, Davidson EH. The endoderm gene regulatory network in
sea urchin embryos up to mid-blastula
e
stage. Dev Biol
2010;340:188 e 99.
[54] Ransick A, Davidson EH. Cis-regulatory processing of Notch
signaling input to the sea urchin glial cells missing gene during
mesoderm specification. Dev Biol 2006;297:587
602.
[55] Smith J, Kraemer E, Liu H, Theodoris C, Davidson E. A spatially
dynamic cohort of regulatory genes in the endomesodermal
gene network of the sea urchin embryo. Dev Biol 2008;313:863
e
[38]
Jaeger J, Blagov M, Kosman D, Kozlov KN, Manu, Myasnikova E,
et al. Dynamical analysis of regulatory interactions in the gap gene
system of Drosophila melanogaster. Genetics 2004;167:1721
37.
[39] Perkins TJ, Jaeger J, Reinitz J, Glass L. Reverse engineering the
gap gene network of Drosophila melanogaster. PLoS Comput Biol
2006;2:e51.
[40] Dessaud E, Ribes V, Balaskas N, Yang LL, Pierani A, Kicheva A,
et al. Dynamic assignment and maintenance of positional identity
in the ventral neural tube by the morphogen sonic hedgehog. PLoS
Biol 2010;8:e1000382.
[41] Ribes V, Balaskas N, Sasai N, Cruz C, Dessaud E, Cayuso J, et al.
Distinct Sonic Hedgehog signaling dynamics specify floor plate
and ventral neuronal progenitors in the vertebrate neural tube.
Genes Dev 2010;24:1186 e 200.
[42] Nahmad M, Stathopoulos A. Dynamic interpretation of hedgehog
signaling in the Drosophila wing disc. PLoS biology 2009;7:e1000202.
[43] Bolouri H, Davidson EH. Transcriptional regulatory cascades in
development: initial rates, not steady state, determine network
kinetics. Proc Natl Acad Sci USA 2003;100:9371 e 6.
[44] Shea MA, Ackers GK. The OR control system of bacteriophage
lambda. A physical-chemical model for gene regulation. J Mol Biol
1985;181:211 e 30.
[45] Materna SC, Nam J, Davidson EH. High accuracy, high-resolution
prevalence measurement for the majority of locally expressed
regulatory genes in early sea urchin development. Gene Expr
Patterns 2010;10:177
75.
[56] Wahl ME, Hahn J, Gora K, Davidson EH, Oliveri P. The cis-
regulatory system of the tbrain gene: alternative use of multiple
modules to promote skeletogenic expression in the sea urchin
embryo. Dev Biol 2009;335:428 e 41.
[57] Cameron RA, Fraser SE, Britten RJ, Davidson EH. Macromere cell
fates during sea urchin development. Development 1991;113:
1085 e 91.
[58] Ransick A, Davidson EH. Late specification of Veg1 lineages to
endodermal fate in the sea urchin embryo. Dev Biol 1998;195:
38 e 48.
[59] Oliveri P, Davidson EH, McClay DR. Activation of pmar1 controls
specification of micromeres in the sea urchin embryo. Dev Biol
2003;258:32 e 43.
[60] Leonard JD, Ettensohn CA. Analysis of dishevelled localization
and function in the early sea urchin embryo. Dev Biol
2007;306:50 e 65.
[61] Weitzel HE, Illies MR, Byrum CA, Xu R, Wikramanayake AH,
Ettensohn CA. Differential stability of beta-catenin along the
animal-vegetal axis of the sea urchin embryo mediated by
dishevelled. Development 2004;131:2947 e 56.
[62] Logan CY, Miller JR, Ferkowicz MJ, McClay DR. Nuclear beta-
catenin is required to specify vegetal cell fates in the sea urchin
embryo. Development 1999;126:345
e
e
84.
[46] Howard-Ashby M, Materna SC, Brown CT, Chen L, Cameron RA,
Davidson EH. Identification and characterization of homeobox tran-
scription factor genes in Strongylocentrotus purpuratus, and their
expression in embryonic development. Dev Biol 2006;300:74 e 89.
[47] Howard-Ashby M, Materna SC, Brown CT, Chen L, Cameron RA,
Davidson EH. Gene families encoding transcription factors
expressed in early development of Strongylocentrotus purpuratus.
Dev Biol 2006;300:90 e 107.
57.
[63] Chuang CK, Wikramanayake AH, Mao CA, Li X, Klein WH.
Transient appearance of Strongylocentrotus purpuratus Otx in
micromere nuclei: cytoplasmic retention of SpOtx possiblymediated
through an alpha-actinin interaction. Dev Genet 1996;19:231 e 7.
[64] Revilla-i-Domingo R, Oliveri P, Davidson EH. A missing link in
the sea urchin embryo gene regulatory network: hesC and the
double-negative specification of micromeres. Proc Natl Acad Sci
USA 2007;104:12383 e 8.
e
e
Search WWH ::




Custom Search