Biology Reference
In-Depth Information
way downstream to the deployment of morphogenesis
cassettes and differentiation gene batteries, except for anal-
yses of transcriptional control for various subsets of differ-
entiation genes. In general, control of downstream gene
expression remains unlinked to prior developmental speci-
fication functions. The way is open, however, to extend
GRNs downstream so that they encompass the linkages
between terminal local regulatory states and the effector
genes that produce the observed morphogenetic and differ-
entiation outcomes. This would be like traversing the vertical
red arrows upwards in given domains of the cartoon of
Figure 11.3 . This is an enormous challenge, but the reward
will be a true explanation of developmental processes that
extends all the way from the genome, to the succession of
regulatory states, to the control systems that animate differ-
ential effector gene expression.
[9] Malpighi M. Dissertatio epistolica de formatione pulli in ovo
[Epistological dissertation on the formation of the chick in the
egg]. London: Apud Joannem Martyn; 1673.
[10] Malpighi M. Opera Omnia. London: apud Robertum Scott; 1686.
[11] Longabaugh WJ, Davidson EH, Bolouri H. Computational repre-
sentation of developmental genetic regulatory networks. Dev Biol
2005;283:1 e 16.
[12] Longabaugh WJ, Davidson EH, Bolouri H. Visualization, docu-
mentation, analysis, and communication of large-scale gene regu-
latory networks. Biochim Biophys Acta 2009;1789:363 e 74.
[13] Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH,
et al. A genomic regulatory network for development. Science
2002;295:1669 e 78.
[14] Oliveri P, Tu Q, Davidson EH. Global regulatory logic for speci-
fication of an embryonic cell lineage. Proc Natl Acad Sci USA
2008;105:5955 e 62.
[15] Peter IS, Davidson EH. A gene regulatory network controlling the
embryonic specification of endoderm. Nature 2011;474:635 e 9.
[16] Braasch I, Schartl M, Volff JN. Evolution of pigment synthesis
pathways by gene and genome duplication in fish. BMC Evol Biol
2007;7:74.
NOTE ADDED IN PROOF
A recent computational model based on the GRN shown in
Fig.11.2 demonstrates that in fact this network contains
sufficient information to predict successfully almost all the
observed spatial and temporal gene expression (Peter, I.S.,
Faure, E. and Davidson, E.H., Predictive computation of
genomic logic processing functions in embryonic devel-
opment. PNAS DOI 10.1073/pnas.1207852109)
[17]
Ilagan JG, Cvekl A, Kantorow M, Piatigorsky J, Sax CM. Regu-
lation of alphaA-crystallin gene expression. Lens specificity ach-
ieved through the differential placement of similar transcriptional
control
elements
in mouse
and
chicken.
J Biol Chem
8.
[18] Cvekl A, Piatigorsky J. Lens development and crystallin gene
expression: many roles for Pax-6. Bioessays 1996;18:621
1999;274:19973
e
30.
[19] Davidson EH. The Regulatory Genome. Gene Regulatory
Networks in Development and Evolution. San Diego, CA:
Academic Press/Elsevier; 2006.
[20] Davidson EH, Erwin DH. An integrated view of precambrian
eumetazoan evolution. Cold Spring Harb Symp Quant Biol 2009;
74:65 e 80.
[21] Peter IS, Davidson EH. Modularity and design principles in the sea
urchin embryo gene regulatory network. FEBS Letters 2009;
583:3948 e 58.
[22] Peter IS, Davidson EH. Evolution of gene regulatory networks
controlling body plan development. Cell 2011;144:970 e 85.
[23] Davidson EH. How embryos work: a comparative view of diverse
modes of cell fate specification. Development 1990;108:365 e 89.
[24] Davidson EH. Emerging properties of animal gene regulatory
networks. Nature 2010;468:911 e 20.
[25] Barolo S, Posakony JW. Three habits of highly effective signaling
pathways: principles of transcriptional control by developmental
cell signaling. Genes Dev 2002;16:1167 e 81.
[26] Saka Y, Smith JC. A mechanism for the sharp transition of
morphogen gradient interpretation in Xenopus. BMC Dev Biol
2007;7:47.
[27] Laslo P, Spooner CJ,WarmflashA, Lancki DW, LeeHJ, Sciammas R,
et al. Multilineage transcriptional priming and determination of
alternate hematopoietic cell fates. Cell 2006;126:755 e 66.
[28] Narula J, Smith AM, Gottgens B, Igoshin OA. Modeling reveals
bistability and low-pass filtering in the network module deter-
mining blood stem cell fate. PLoS Comput Biol 2010;6:e1000771.
[29] Goentoro L, Shoval O, Kirschner MW, Alon U. The incoherent
feedforward loop can provide fold-change detection in gene
regulation. Mol Cell 2009;36:894 e 9.
e
ACKNOWLEDGEMENT
We are pleased to acknowledge support from NIH Grant HD037105,
which provided support for ISP. We also acknowledge the support of
the Lucille P. Markey Charitable Trust.
REFERENCES
[1] Wilson EB. The Cell in Development and Heredity. third Ed. New
York, NY: Macmillan; 1924.
[2] Wilson EB. The Cell in Development and Heredity. first Ed. New
York, NY: Macmillan; 1896.
[3] Gilbert SF. Embryological origins of the Gene Theory. J Hist Biol
1978;11:307 e 51.
[4] Laubichler MD, Davidson EH. Boveri's long experiment: sea
urchin merogones and the establishment of the role of nuclear
chromosomes in development. Dev Biol 2008;314:1 e 11.
[5] Davidson EH. Gene Activity in Early Development. third Ed. San
Diego, CA: Academic Press/ Elsevier; 1986.
[6] Boveri T. ¨ ber mehrpolige mitosen als mittel zur analyse des
zellkerns. Verhandlungen der Physikalische-medizinischen
Gesellschaft zu W ¨ rzburg 1902;35:67
90.
[7] Boveri T. Zellenstudien V. ¨ ber die Abh ¨ ngigkeit der Kerngr ¨ sse
und Zellenzahl bei Seeigellarven von der Chromosomenzahl der
Ausgangszellen. Jena: Gustav Fischer; 1905.
[8] Boveri T. Zellenstudien VI. Die Entwicklung dispermer Seeige-
leier. Ein Beitrag zur Befruchtungslehre und zur Theorie des Kerns.
Jena: Gustav Fischer; 1907.
e
Search WWH ::




Custom Search