Biomedical Engineering Reference
In-Depth Information
[24]
Sugiura, S. Oda, T. Aoyagi, Y. Matsuo, R. Enomoto, T. Matsumoto, K. Nakamura, T.
Satake, M. Ochiai, A. Ohkohchi, N. & Nakajima, M. (2007). Microfabricated airflow
nozzle for microencapsulation of living cells into 150 micrometer microcapsules.
Biomed. Microdevices , 9 , 91-99.
[25]
Zhang, D.F. & Stone, H.A. (1997). Drop formation in viscous flows at a vertical
capillary tube. Phys. Fluids , 9 , 2234-2242.
[26]
Lim, S.T. Martin, G.P. Berry, D.J. & Brown, M.B. (2000). Preparation and evaluation
of the in vitro drug release properties and mucoadhesion of novel microspheres of
hyaluronic acid and chitosan. J. Control. Release , 66 , 281-292.
[27]
Ribeiro, A.J. Neufeld, R.J. Arnaud, P. & Chaumeil, J.C. (1999). Microencapsulation of
lipophilic drugs in chitosan-coated alginate microspheres. Int. J. Pharm. , 187 , 115-123.
[28]
Sakai, S. Kawabata, K. Ono, T. Ijima, H. & Kawakami, K. (2004). Preparation of
mammalian cell-enclosing subsieve-sized capsules (<100μm) in a coflowing stream.
Biotechnol. Bioeng. , 86 , 168-173.
[29]
Cramer, C. Beruter, B. Fischer, P. & Windhab, E.J. (2002). Liquid jet stability in a
laminar flow field. Chem. Eng. Technol. , 25 , 499-506.
[30]
Zhang, X. & Basaran, O.A. (1995). An experimental study of dynamics of drop
formation. Phys. Fluids , 7 , 1184-1203.
[31]
Cramer, C. Fischer, P. & Windhab, E.J. (2004). Drop formation in a co-flowing
ambient fluid. Chem. Eng. Sci. , 59 , 3045-3058.
[32]
Umbanhowar, P.B. Prasad, V. & Weitz, D.A. (2000). Monodisperse emulsion
generation via drop break off in a coflowing stream. Langmuir , 16 , 347-351.
[33]
Rayleigh, J.W.S. (1878). On the stability of jets. Proc. Lond. Math. Soc. , 10 , 4-11.
[34]
Sakai, S. Kawabata, K. Ono, T. Ijima, H. & Kawakami, K. (2005). Higher viscous
solution induces smaller droplets for cell-enclosing capsules in a co-flowing stream.
Biotechnol. Prog. , 21 , 994-997.
[35]
Sakai, S. Kawabata, K. Ono, T. Ijima, H. & Kawakami, K. (2005). Development of
mammalian cell-enclosing subsieve-size agarose capsules (<100μm) for cell therapy.
Biomaterials , 26 , 4786-4792.
[36]
Sakai, S. Hashimoto, I. & Kawakami, K. (2006). Usefulness of flow focusing
technology for producing subsieve-size cell enclosing capsules: Application for
agarose capsules production. Biochem. Eng. J. , 30 , 218-221.
[37]
Sakai, S. Hashimoto, I. & Kawakami, K. (2007). Agarose-gelatin conjugate for
adherent cell-enclosing capsules. Biotechnol. Lett. , 29 , 731-735.
[38]
Sakai, S. Hashimoto, I. & Kawakami, K. (2006). Development of alginate-agarose
subsieve-size capsules for subsequent modification with a polyelectrolyte complex
membrane. Biochem. Eng. J. , 30 , 76-81.
[39]
Sakai, S. Hashimoto, I. Ogushi, Y. & Kawakami, K. (2007). Peroxidase-catalyzed cell-
encapsulation in subsieve-size capsules of alginate with phenol moieties in water-
immiscible fluid dissolving H 2 O 2 . Biomacromolecules , 8 , 2622-2626.
[40]
Sakai, S. Ito, S. Ogushi, Y. & Kawakami, K. (2008). Feasibility of
carboxymethylcellulose with phenol moieties as a material for mammalian cell-
enclosing subsieve-size capsules. Cellulose , 15 , 723-729.
Search WWH ::




Custom Search