Biomedical Engineering Reference
In-Depth Information
[8]
Leung, A. Ramaswamy, Y. Munro, P. Lawrie, G. Nielsen, L. & Trau, M. (2005).
Emulsion strategies in the microencapsulation of cells: pathways to thin coherent
membranes. Biotechnol. Bioeng. , 92 , 45-53.
[9]
Pajic-Lijakovic, I. Bugarski, D. Plavsic, M. & Bugarski, B. (2007). Influence of
microenvironmental conditions on hybridoma cell growth inside the alginate-poly-L-
lysine microcapsule. Process Biochem. , 42 , 167-174.
[10]
Chang, P.L. Hortelano, G. Tse, M. & Awrey, D.E. (1994). Growth of recombinant
fibroblasts in alginate microcapsules. Biotechnol. Bioeng. , 43 , 925-933.
[11]
Zhang, Y. Wang, W. Zhou, J. Yu, W. Zhang, X. Guo, X. & Ma, X. (2007). Tumor
anti-angiogenic gene therapy with microencapsulated recombinant CHO cells. Ann.
Biomed. Eng. , 35 , 605-614.
[12]
Sparks, R.E. Salemme, R.M. Meier, P.M. Litt, M.H. & Lindan, O. (1969). Removal of
waste metabolites in uremia by microencapsulated reactants. Trans. Amer. Soc. Artif.
Int. Organs , 15 , 353-359.
[13]
Lim, F. & Sun, A.M. (1980). Microencapsulated islets as bioartificial endocrine
pancreas. Science , 210 , 908-910.
[14]
Smidsrod, O. & Skjak-Braek, G. (1990). Alginate as immobilization matrix for cells.
Trends Biotechnol. , 8 , 71-78.
[15]
Wolters, G.H. Fritschy, W.M. Gerrits, D. & van Schilfgaarde, R. (1992). A versatile
alginate droplet generator applicable for microencapsulation of pancreatic islets. J.
Appl. Biomater. , 3 , 281-286.
[16]
Ross, C.J. & Chang, P.L. (2002). Development of small alginate microcapsules for
recombinant gene product delivery to the rodent brain. J. Biomater. Sci. Polym. Ed. ,
13 , 953-962.
[17]
Chicheportiche, D. & Reach, G. (1988). In vitro kinetics of insulin release by
microencapsulated rat islets: effect of the size of the microcapsules. Diabetologia , 31 ,
54-57.
[18]
Schrezenmeir, J. Gero, L. Solhdju, M. Kirchgessner, J. Laue, C. Beyer, J. Stier, H. &
Muller Klieser, W. (1994). Relation between secretory function and oxygen supply in
isolated islet organs. Transplant. Proc. , 26 , 809-813.
[19]
Canaple, L. Rehor, A. & Hunkeler, D. (2002). Improving cell encapsulation through
size control. J. Biomater. Sci. Polym. Ed. , 13 , 783-796.
[20]
Leblond, F.A. Simard, G. Henley, N. Rocheleau, B. Huet, P.M. & Halle, J.P. (1999).
Studies on smaller (approximately 315 μm) microcapsules: IV. Feasibility and safety
of intrahepatic implantations of small alginate poly-L-lysine microcapsules. Cell
Transplant. , 8 , 327-337.
[21]
Robitaille, R. Pariseau, J.-F. Leblong, F.A. Lamoureux, M. Lepage, Y. & Halle, J.-P.
(1999). Studies on small (<350μm) alginate-poly-L-lysine microcapsules. III.
Biocompatibility of smaller versus standard microcapsules. J. Biomed. Mater. Res. , 44 ,
116-120.
[22]
Ganan-Calvo, A.M. (1998). Generation of steady liquid microthreads and micron-sized
monodisperse sprays in gas streams. Phys. Rev. Lett. , 80 , 285-288.
[23]
Nir, R. Lamed, R. Gueta, L. & Sahar, E. (1990). Single-cell entrapment and
microcolony development within uniform microspheres amenable to flow cytometry.
Appl. Environ. Microb. , 56 , 2870-2875.
Search WWH ::




Custom Search