Planning a Wireless Home Network Part 1

In this topic, we show you how to plan a wireless home network — from selecting the right wireless technology (there are several variants), to deciding what things to connect and where to connect them, to the all-important act of budgeting. You also find out about other issues you should consider when planning your home network, including connecting to the Internet; sharing printers, other peripherals, and fun, noncomputer devices; and security. When you’re ready to begin buying the wireless home networking parts (if you haven’t done so already), head to next topic, where we give detailed advice about buying exactly the equipment you need. In Part III, we show you how to set up and install your wireless home network.

Deciding What to Connect to the Network

Believe it or not, some technogeeks have a computer in every room of their house. We have some close friends who fit into that category (including, well, ourselves). You may not own as many computers as we do,but you probably own more than one, and we’re guessing that you have at least one printer and some other peripherals. You’re wirelessly networking your home for a reason, no matter whether it’s to share that cool, new color inkjet printer (or scanner or digital video recorder), to play your computer-based video files on your new widescreen TV, or to give every computer in the house always-on access to the Internet. Whatever your reason, the first thing you must do when planning a wireless home network is to determine what you want connected to the network.


Counting network devices

The first step to take in planning a network is to count the number of devices you want to attach to the network — that means any computer or device that you want attached to your broadband Internet connection, to your file servers, or to shared resources, such as printers. You almost certainly will connect to your network each of the computers you use regularly.

Next, consider devices that aren’t necessarily computers in the traditional sense but that can benefit from a network connection — for example, the printers we mention in the preceding paragraph. You don’t need to connect a printer directly to a single PC in a networked environment — you can connect it to a device known as a print server and let all your networked PCs access it. Similarly, you can connect devices such as NAS (Network Attached Storage), which let you store big files in a centralized location (or even do PC backups over the network).

If you’re an audiophile or just enjoy digital media, you should consider adding your home entertainment system to your network so that you can share MP3 files, play video games, and watch DVDs from anywhere in your house, wire-lessly! You can even make your phone calls over your wireless network with one of the Wi-Fi phones we talk about in next topic.

As you plan out your network and count devices, consider that some devices already have all the wireless network capabilities they need built in. For example, most laptop computers and some printers support at least 802.11g wireless networking — so you should put them on your list, but you don’t need to spend any money to add them to your network.

Choosing wired or wireless

After you know what you’re networking, you need to choose how to network it. By that, we mean that you have to decide what to connect to your home’s network with wires and what you should use wireless networking for. At first glance, this decision may seem obvious. You would expect us to always recommend using wireless because this topic talks about wireless networks; however, using both wired and wireless connections can sometimes make the most sense.

Wireless network devices and wired network devices can be used on the same network. Both talk to the network and to each other by using a protocol known as Ethernet. (You should be getting used to that term by now if you have been reading from the beginning of the topic.

The obvious and primary benefit of connecting to a network wirelessly is that you eliminate wires running all over the place. But, if two devices are sitting on the same desk or table — or are within a few feet of each other — connecting them wirelessly may be pointless. You can get Ethernet cables for $5 or less; an equivalent wireless capability for two devices may top $100 when everything is said and done. Keep in mind, however, that your computer must have a wired network adapter installed to be able to make a wired connection to the network. Fortunately, wired network adapters are dirt cheap these days. Virtually all new computers come with one installed as a standard feature (at no additional charge).

Figure 4-1 shows a simple drawing of a network that connects a wireless PC to a wired PC through two network devices: an access point (AP) and a hub. (Recall that your AP connects wireless devices to the rest of the wired network. A network hub or switch is often used to connect PCs to the network by a wired connection.If you think that it seems absurd to need two network devices to connect two computers, you’re not alone. Hardware manufacturers have addressed this issue by creating APs that have a built-in switch — in fact, it’s hard to buy an AP that doesn’t have a switch (as well as a broadband router) built into it. See the section "Choosing an access point," later in this topic, for more information about these multifunction APs.

A network can use both wireless and wired connections.

Figure 4-1:

A network can use both wireless and wired connections.

Choosing a wireless technology

After you know what you’re networking and what will be on your wireless network, you have to decide how to network wirelessly.

Collectively, all these technologies are usually referred to as Wi-Fi, which isn’t a generic term, but, rather, refers to a certification of interoperability. The folks at the Wi-Fi Alliance (www.wi-fi.org) do extensive testing of new wireless gear to make sure that it works seamlessly with wireless equipment from different manufacturers. When it works, it gets the Wi-Fi logo on the box, so you can rest assured that it works in your network.

Wi-Fi certified gear works together — as long as it’s of a compatible type. That means that any 802.11b, 802.11g, or 802.11n Wi-Fi certified gear works with any other equipment of that type; similarly, any 802.11a Wi-Fi certified gear works with any other 802.11a and 5 GHz capable 802.11n gear that has been certified. (Note that not all 802.11n gear is 5 GHz capable — if a particular piece of equipment supports this, it will say so and will also be 802.11a certified.) 802.11b and g gear does not work with 802.11a gear, even if it has all been certified because they work on different radio frequencies and cannot communicate with each other.

For home users, the three most important practical differences between 802.11a, 802.11b, 802.11g, and 802.11n networks are speed, price, and compatibility:

802.11b is an older standard that is no longer used these days. You would be hard pressed to find any 802.11b in your network, and only if you have been buying legacy equipment at flea markets or electronic junk yards.

802.11g equipment has been the standard in use for a few years. Thanks to its proliferation, it’s inexpensive but at least four times faster than 802.11b.

802.11a can still be found in some special-use corporate environments, but it’s no longer used in the home. It is as fast as 802.11g, costs much more, and has a shorter range.

802.11n is five times faster than 802.11a and 802.11g and is 22 times faster than 802.11b.

802.11a and 802.11b are not compatible. 802.11a and 802.11g are not compatible. 802.11b and 802.11g are compatible.

802.11n is compatible with all other standards but at the cost of its higher speed — when you add 802.11a, b, or g gear to an 802.11n network, you slow down the ultimate throughput or speed of that network.

The 802.11n standard is compatible with all other standards, but not all 802.11n equipment supports both the 2.4 GHz (802.11b and g) and 5 GHz (802.11a) frequencies — many support only 2.4 GHz. An AP that includes 802.11n should work with any other device as well (though not always at the higher 248 Mbps speed of 802.11n). Thus, you don’t have to look for a multimode AP.

If your primary reason for networking the computers in your house is to enable Internet sharing, 802.11g is more than fast enough because your Internet connection probably won’t exceed the 54 Mbps of the 802.11g connection any time soon — unless you’re one of the lucky few who lives where fiber-optic Internet services (such as Verizon’s FiOS service) are installed.

Despite the fact that most Internet services are slower than 802.11g, we don’t recommend that you buy only 802.11g gear. 802.11g is being superseded by 802.11n with full 802.11g compatibility. In fact, you would save only a few bucks by buying 802.11g gear new. The speed, range, and compatibility of 802.11n are more than worth the increased price tag.

802.11g is the minimum standard around which you should build your network.

If you want to hedge your bets, look for an 802.11n AP that can handle all Wi-Fi technology standards. Apple, Belkin, NETGEAR, D-Link, and several other leading manufacturers of wireless home networking equipment already offer 802.11n wireless devices.

Choosing an access point

The most important and typically most expensive device in a wireless network is the access point (AP; also sometimes called a base station). An AP acts like a wireless switchboard that connects wireless devices on the network to each other and to the rest of the wired network; it’s required to create a wireless home network. Figure 4-2 depicts three PCs connected wirelessly to each other through an AP.

The vast majority of APs now available aren’t just access points. Instead, most incorporate the functionality of a broadband router (which connects multiple computers to an Internet connection), a network switch (which connects multiple wired computers together), and even a firewall (which helps keep "bad guys" off your network).

The most popular APs for use in home networks are those that can do one or more of the following:

Connect wired PCs: A switch is an enhanced version of a network hub that operates more efficiently and quickly than a simple hub. By building a switch inside the AP, you can use the one device to connect PCs to your network by using either wired network adapters or wireless adapters.

Assign network addresses: Every computer on a network or on the Internet has its own address: its Internet Protocol (IP) address. Computers on the Internet communicate — they forward e-mail, Web pages, and the like — by sending data back and forth from IP address to IP address. A Dynamic Host Configuration Protocol (DHCP) server dynamically assigns private IP addresses to the computers on your home network so that they can communicate. You could use a software utility in Windows (or Mac OS) to manually assign an IP address to each computer, but that process is tedious and much less flexible than automatic address assignment.

Three PCs connected wirelessly to each other through an AP.

Figure 4-2:

Three PCs connected wirelessly to each other through an AP.

Connect to the Internet: With a cable/digital subscriber line (DSL) router between a broadband modem and your home network, all computers on the network can access the Internet directly. An AP combined with a DHCP and a cable or DSL router is sometimes called a wireless Internet gateway. (See the "Connecting to the Internet" section, later in this topic, for more about the Network Address Translation feature that makes Internet sharing possible and for more on Internet connectivity.)

Add a print server: A print server enables you to connect a printer directly to the network rather than connect it to one of the computers on the network. See the "Adding printers" section, later in this topic.

Connect in many ways: The most common method of connecting an AP to your computer or to the wired portion of your network is through an Ethernet port, but other options may be much easier to install if your house isn’t wired with Ethernet cable. If you have set up a HomePlug wired network using the powerlines in your home, shop for an AP with HomePlug connectivity.

You need to have two HomePlug devices, one in — or near — your main AP or router and one in the location you want to extend the network to.

Provide firewall security: A firewall is a device that basically keeps the bad guys off your network and out of your computers.

Be combined with a modem: If you’re a cable Internet or DSL subscriber, you may be able to use your own modem rather than lease one from your Internet service provider (ISP). In that case, consider purchasing a modem that’s also a wireless AP. A cable or DSL modem combined with a wireless Internet gateway is the ultimate solution in terms of installation convenience and equipment cost savings.

You typically can’t buy a modem/AP/router combination off the shelf (or at most Internet retailers) like you can buy a nonmodem AP/router. You get these all-in-one devices directly from your broadband service provider in almost all cases.

Deciding where to install the access point

If you have ever experienced that dreaded dead zone while talking on a cellular phone, you know how frustrating poor wireless coverage can be. To avoid this situation within your wireless home network, you should strive to install your wireless network equipment in a way that eliminates dead wireless network zones in your house. Ideally, you determine the best placement of your AP so that no spot in your house is left uncovered. If that isn’t possible, you should at least find any dead zones in your house to optimize your signal coverage.

To achieve optimum signal coverage, the best place to install an AP is near the center of your home. Think about where you will place the AP when you make your buying decision. All APs can sit on a shelf or table, but some APs can also be mounted to a wall or ceiling. When making your AP selection, ensure that it can be installed where it works best for the configuration of your house as well as stays out of reach of your little ones or curious pets.

The position of the access point is critical because your entire signal footprint emanates from the AP in a known way, centered from the AP’s antennas. Sometimes, not enough consideration is given to the positioning of the access point because it so often works well out of the box, just sitting on a table.

Other people install the AP wrong in the first place. For example, probably one of the worst manufacturing decisions was to put mounting brackets on access points. People get the impression that you should then — duh — mount them on the wall. That’s great except for the fact that, depending on the antenna, you may just kill most of your throughput. You see, when an antenna is flush up against a wall, as is typical in a wall-mount situation, the signals of the antenna reflect off the wall back at the antenna, causing interference and driving down throughput precipitously. Yech. (But you see, customers want a wall-mount bracket, so product managers at wireless LAN companies decided that they had to give it to them.) The best mounting is six or more inches off the wall.

The vertical positioning of the mounting point is important as well. Generally, you have more interference lower to the ground. If you did a cross section of your house in 1-foot intervals, when you get higher and higher, you would see less on your map. Thus, signals from an access point located on a shelf low to the ground will find more to run into than the ones that are mounted higher. Although this may sound like common sense, consider that most DSL and cable modems are installed by technicians who are used to installing phone and cable TV lines. How many of these are generally located 5 feet off the floor? They’re not; they tend to be along the floorboards and low to the ground or in the basement. It’s not surprising that a combined DSL access point router would be plugged in low to the ground, too.

See where we’re going with this? You don’t care where your cable modem is, but you should care where your AP is located. And, if you have an integrated product, you’re probably tempted to swap out the cable modem for the cable modem access point. Simply moving that unit higher almost always does a world of good.

Moving an AP out of the line of sight of microwaves, cordless phones, refrigerators, and other devices is a good idea, too. Mounting the AP in the laundry room off the kitchen doesn’t make a great deal of sense if you plan to use the AP primarily in rooms on the other side of the kitchen. Passing through commonly used interferers (all those metal appliances and especially that microwave oven when it’s in use) generally isn’t a smart move.

Factors that affect signal strength

Many variables affect whether you get an adequate signal at any given point in your house, including these factors:

The distance from the AP: The farther away from the AP, the weaker the signal. Wi-Fi 802.11g networks, for example, promise a maximum operating range of 100 feet at 54 Mbps to 300 feet at 1 Mbps. Indoors, a realistic range at 54 Mbps is about 60 feet. 802.11n networks have a significantly longer range outdoors of up to 750 feet and an indoor range up to 210 feet at 248 Mbps. The range differs from vendor to vendor as well.

The power of the transmitter: Wi-Fi APs transmit at a power output of less than 30 dBm (one watt).

The directivity or gain of the antennas attached to the AP and to wireless network adapters: Different antennas are designed to provide different radiation patterns. That’s a fancy way of saying that some are designed to send radio waves in all directions equally, but others concentrate their strength in certain directions.Check out the specifications of the ones you’re looking at before you buy them.

The construction materials used in the walls, floors, and ceilings: Some construction materials are relatively transparent to radio signals, but other materials — such as marble, brick, water, paper, bulletproof glass, concrete, and especially metal — tend to reflect some of the signal, thus reducing signal strength.

Your house plan: The physical layout of your house may not only determine where it’s practical to position an AP but also affect signal strength, because the position of walls and the number of floors, brick fireplaces, basements, and so on can partially or even completely block the wireless network’s radio signal.

Client locations: Reception is affected by the distance from the AP to the rooms in your house where someone will need wireless network access.

Stationary physical objects: Objects permanently installed in your home — such as metal doors, heating ducts, and brick fireplaces — can block some, or all, of the signal to particular spots in your house.

Movable physical objects: Other types of objects, including furniture, appliances, plants, and even people, can also block enough of the signal to cause the network to slow down or even to lose a good connection.

APs: Interference can also be caused by the presence of other APs. In other words, if you have a big house (too big for a single AP to cover), you have to keep in mind that in parts of the house — like in the area that’s pretty much directly between the two APs — you find that the radio waves from each AP can interfere with the other. The same is true if you live in a close packed neighborhood in which a lot of people have APs for their home networks. Check out the following subsection for more information regarding this phenomenon.

Wireless interference in the home

Probably the single biggest performance killer in your wireless home network is interference in the home. The Federal Communications Commission (FCC) set aside certain unlicensed frequencies that could be used for low-power wireless applications. In specific frequency bands, manufacturers can make (and you can use) equipment that doesn’t require a license from the FCC for the user to operate. This is different from, for example, buying a 50,000-watt radio transmitter and blasting it over your favorite FM radio frequency band, which would be a major no-no because those bands are licensed for certain power levels.

As a result, all sorts of companies have created products (including cordless phones, wireless radio frequency [RF] remote controls, wireless speakers, TV set extenders, and walkie-talkies) that make use of these frequency bands. If you have lots of wireless devices already in your home, they may use some of the same frequency bands as your wireless home network.

Another form of wireless interference comes from devices that emit energy in the same bands, such as microwave ovens. If you have a cordless phone with its base station near a microwave and you notice that the voice quality degrades every time you use the microwave, that’s because the micro (radio) waves are in the same radiation band as your cordless phone. Motors, refrigerators, and other home consumer devices do the same thing.

What’s the answer? The good news is that you can deal with almost all these by knowing what to look for and being smart about where you place your equipment. If your access point is in the back office and you want to frequently work in the living room with your laptop — but your kitchen is in the middle — you may want to look at adding a second access point in the living room and linking it with the office via any of a number of alternative connections options that are immune to the problems we mention here.

Remember these specific things to look for when shopping. You see cordless phones operating primarily in the 900 MHz, 2.4 GHz, and 5 GHz frequencies. The 900 MHz phones pose no problems — but are also almost impossible to find these days — and the 2.4 GHz and 5 GHz phones interfere with your wireless network signals (in the 802.11b/g and 802.11a frequency ranges, respectively). Just know that cordless phones and wireless home networks really don’t like each other much. You can find cordless phones that are designed not to interfere with your wireless network. These phones are usually labeled clearly that they are designed to work within and around wireless networks. We have tested a few, and while they do work much better — your network connection does not drop out when you answer the phone — they still cause enough interference that your connection will slow down a noticeable amount.

You should attempt to keep a direct line between APs, residential gateways, and the wireless devices on your network. A wall that is 1.5 feet thick, at a 45° angle, appears to be almost 3 feet thick. At a 2° angle, it looks more than 42 feet thick. Try to make sure that the AP and wireless adapters are positioned so that the signal travels straight through a wall or ceiling for better reception.

RF interference

Nowadays, many devices that once required wires are now wireless, and this situation is becoming more prevalent all the time. Some wireless devices use infrared technology, but many wireless devices, including your wireless network, communicate by using radio frequency (RF) waves. As a consequence, the network can be disrupted by RF interference from other devices sharing the same frequencies used by your wireless network.

Among the devices most likely to interfere with 802.11g and 802.11n networks are microwave ovens and cordless telephones that use the 2.4 GHz or 5 GHz band. The best way to avoid this interference is to place APs and computers with wireless adapters at least 6 feet away from the microwave and the base station of any portable phone that uses either band.

Bluetooth devices also use the 2.4 GHz band, but the hop pattern of the Bluetooth modulation protocol all but ensures that any interference is short enough in duration to be negligible.

Because relatively few devices are trying to share the 5 GHz frequencies used by some 802.11n devices, your network is less likely to experience RF interference if it’s using 802.11n. If the 5 GHz frequency is the only clear band, 802.11n will work but at the cost of absolute distance.

You should also try to keep all electric motors and electrical devices that generate RF noise through their normal operation, such as monitors, refrigerators, electric motors, and universal power supply (UPS) units, at least 3 and preferably 6 feet away from a wireless network device.

Signal obstacles

Wireless technologies are susceptible to physical obstacles. When deciding where best to place your APs, look at Table 4-1, which lists obstacles that can affect the strength of your wireless signals. The table lists common household obstacles (although often overlooked) as well as the degree to which the obstacle is a hindrance to your wireless network signals.

Table 4-1 How Common Household Items Affect a Wi-Fi Signal

Obstruction

Degree of Attenuation

Example

Open space

Low

Backyard

Wood

Low

Inner wall; door; floor

Plaster

Low

Inner wall (older plaster has a lower degree of attenuation than newer plaster)

Synthetic materials

Low

Partitions; home theater treatments

Cinder block

Low

Inner wall; outer wall

Asbestos

Low

Ceiling (older buildings)

Glass

Low

Nontinted window

Wire mesh in glass

Medium

Door; window

Metal tinted glass

Medium

Tinted window

Body

Medium

Groupings of people (dinner table)

Water

Medium

Damp wood; aquarium; in-home water treatments

Bricks

Medium

Inner wall; outer wall; floor

Marble

Medium

Inner wall; outer wall; floor

Ceramic (metal content or backing)

High

Ceramic tile; ceiling; floor

Paper

High

Stack of paper stock, such as newspaper piles

Concrete

High

Floor; outer wall; support pillar

Bulletproof glass

High

Windows; door

Silvering

Very high

Mirror

Metal

Very high

Inner wall; air conditioning; filing cabinets; reinforced concrete walls and floors

You may want to consider reading next topic on troubleshooting before you finish your planning. Some good tips in that topic talk about setting up and tweaking your network.

Adding printers

In addition to connecting your computers, you may want to connect your printers to the network. Next to sharing an Internet connection, printer sharing is perhaps the biggest cost-saving reason for building a network of home computers. Rather than buy a printer for every PC, everyone in the house can share one printer. Or maybe you have one color inkjet printer and one black-and-white laser printer. If both printers are connected to the network,

The RF doughnut

The shape of the radio signal transmitted to the rooms in your home is determined by the type of antenna you have attached to the AP. The standard antenna on any AP is an omnidirectional antenna, which broadcasts its signal in a spherical shape. The signal pattern that radiates from a typical omnidirectional dipole antenna is shaped like a fat doughnut with a tiny hole in the middle. The hole is directly above and below the antenna.

The signal goes from the antenna to the floor above and the floor below, as well as to the floor on which the AP is located. If your house has multiple floors, try putting your AP on the second floor first. Most AP manufacturers claim a range of 200 feet indoors (at 74 Mbps for 802.11n and 54 Mbps for 802.11g). To be conservative, assume a range of 80 feet laterally and one floor above and below the AP. Keep in mind that the signal at the edges of the "doughnut" and on the floors below or above the AP are weaker than the signal nearer the center and on the same floor as the AP.

Because of this signal pattern, you should try to place the AP as close to the center of your house as is practically possible. Use a drawing of your house plan to locate the center of the house. This spot is your first trial AP location.

Draw a circle with an 80-foot radius on your house plan, with the trial AP location as the center of the circle. If your entire house falls inside the circle, one AP will probably do the job. Conversely, if some portion of the house is outside the circle, coverage may be weaker in that area. You need to experiment to determine whether you get an adequate signal there.

If you determine that one AP will not cover your house, you need to decide how best to place two APs (or even three, if necessary). The design of your house determines the best placement. For a one-level design, start at one end of the house and determine the best location for an 80-foot radius circle that covers all the way to the walls. The center of this circle is the location of the first AP. Then move toward the other end of the house, drawing 80-foot radius circles until the house is covered. The center of each circle is a trial location of an AP. If possible, don’t leave any area in the house uncovered.

Or perhaps you just want to sit by the pool with your wireless laptop and still be able to print to the printer up in your bedroom; it’s easy with a network-attached printer.

You can also share other peripherals, such as network-aware scanners and fax machines. Leading manufacturers of digital imaging equipment (such as Hewlett-Packard) offer feature-rich, multiple-function peripherals that combine an inkjet or laser printer with a scanner, copier, telephone, answering machine, and fax machine. HP and Brother both offer wireless printers that make adding a shared printer to your network simple and quick. If you already have a printer, you can find wireless print servers such as the HP Jetdirect ew2400 802.11g Wireless Print Server to convert your wired printer to a wireless printer.

Here are two ways to share printers over a wired or wireless network:

Connect to a computer: The easiest and cheapest way to connect a printer to the network is to connect a printer to one of the computers on the network. Windows enables you to share any printer connected to any Windows computer on the network.The computer to which the printer is connected has to be running for any other computers on the network to use the printer. Similarly, if you’re using Apple computers, any computer connected to the network can print to a printer that’s connected to one of the computers on the network.

Use a print server: Another way to add a printer is through a print server. As we mention earlier, several hardware manufacturers produce print server devices that enable you to connect one or more printers directly to the network. Some of these devices connect via a network cable, and others are wireless. Many high-end printers even have print server options installed inside the printer cabinet. The cost for a home use, stand-alone network print server has come down a lot in the past few years, but printers with Wi-Fi built in tend to be at the high end of the price range. Surprisingly, some manufacturers bundle a print server with their wireless router at little or no additional cost. If you shop around, you can easily find a wireless AP, cable, or DSL router and print server bundled in one device.

You should be able to get your home network printer connections for free. Obviously, it doesn’t cost anything to connect a printer to a computer that’s already connected to the network. Several manufacturers also include a print server for free with other network devices. If you don’t need one of those devices, just connect the printer you want to share to one of the computers on your home network.

Figure 4-3 depicts a home network with one printer connected to one of the PCs on the network and another printer connected to a wireless Internet gateway, which is a device that bundles a wireless AP and an Ethernet/cable/DSL router into a single unit. In this case, the wireless Internet gateway also has a connection for a printer and acts as a print server.

Connecting your printer to the wireless Internet gateway device is advantageous because a print server permits the printer to stand alone on the network, untethered from any specific computer. When you want to print to a printer that’s connected directly to a computer on the network, that computer must be present and turned on; and, in many cases, you must have a user account and appropriate permission to access the shared printer. A print server makes its printers always available to any computer on the network — even from poolside.

Most folks don’t mind having their printer connected to a computer or to a gateway device in their home — meaning that the computer is connected via peripheral cables to one of these devices. You may, however, want to make your printer itself wireless — so you can stick it anywhere in your house, even if that means that it’s far away from any PCs or gateway devices. In this case, consider buying a wireless print server that can either be an internal part of your printer (in some cases this is an optional module from the printer manufacturer) or sit next to your printer. In this case, your printer is completely decoupled from your wired network — the server is a wireless network client — as well as the hardware and software to run the printer itself.

Why would you spring for the extra money (about $80 to $100)? Here’s an example.A wireless print server solved the problem and got his printer out of the way (and still in a convenient location).

A wireless home network with a wireless Internet gateway and a bundled print server.

Figure 4-3:

A wireless home network with a wireless Internet gateway and a bundled print server.

Adding entertainment and more

When you’re planning your wireless network, don’t forget to include a few gadgets for fun and relaxation. The wildly popular videogame consoles from Sony, Microsoft, and Nintendo all offer network connectivity and Internet connectivity. Don’t forget to consult with the gamers in your household when planning where you need network coverage in your home.

An increasing number of consumer electronics devices, such as digital home entertainment systems, are network aware. Feature-packed home media servers can store thousands of your favorite MP3s and digital videos and make them available over the network to all the computers in your house. Several even include optional wireless networking connectivity. Connecting the sound and video from your PC to your home theater is even possible — really.

Some of the coolest home electronic technology in recent years enables you to control the lights, heating, cooling, security system, home entertainment system, and pool right from your computer. Equally exciting technology enables you to use a home network to set up a highly affordable home video monitoring system. By hooking these systems to your wireless network and hooking the network to the Internet, you can make it possible to monitor and control your home’s utilities and systems, even while away from home.

Next post:

Previous post: