Brainport Bay


The landscape of much of the western highlands of Scotland is one of mountains dissected by long narrow lakes, similar to Norwegian fjords, extending inland from the coast. Loch Fyne in Argyll is one of the longest of these, stretching for more than 50 kilometers (30 miles). On its shores, about halfway along, is one of the most convincing candidates for a prehistoric solar observation platform.

The site known as Brainport Bay or Minard occupies a spectacular setting on a low eminence jutting out into the lake. It achieved notoriety in the late 1970s when, following excavations by the local archaeological society, a curious alignment of artificial structures came to light, dating to the Bronze Age in the mid second millennium b.c.e. It includes a back platform, a flat area built around a natural rock outcrop; two large boulders standing on end, known as the observation boulders, with a flat cobbled area between; and a main platform, again artificially enhanced. The main platform contains what appears to have been an extraordinary sighting device. Two slender standing stones a little over 1 meter (3 feet) tall stood upright in clefts between rocks (they had fallen and been moved but were re-erected after the excavations had located the stone-holes). As viewed from the observation boulders, these stones would have lined up, with the precision of a rifle barrel, upon a notch between two mountains on the only distant horizon visible from the site, some 45 kilometers (30 miles) along the lake to the northeast.

In the Bronze Age, the midsummer sunrise would have occurred just a little to the left of this notch. As the sun moved steadily upwards and to the right, it would have crossed the exact alignment, passing just above the notch, a few minutes later. Furthermore, the appearance of the sun in the alignment would not have been confined to the solstice itself, but would have been equally impressive for a period of several days, like the famous midwinter alignment at Newgrange. This means that unreliable weather is unlikely to have prevented at least one successful sighting of the event in most years.

As far as the evidence goes, this is one of the most convincing cases of a monumental solstitial alignment constructed in the Bronze Age in the whole of Britain and Ireland. Compared with the possible observing platform at Kintraw, for example, the structures at Brainport Bay show clear evidence of human activity and enhancement of the natural features, but not of habitation or burial. It is a prime candidate, in other words, for a ceremonial or ritual site. We are still a long way from knowing what the solstice meant to the people who, we assume, came and observed or worshipped here at dawn on or around the longest day of the year. It is tempting, though, to imagine a priest or two, or perhaps a couple of other people of special social standing, observing the event from the special vantage of the observation boulders while a larger audience had to content themselves with standing on the back platform up the hill behind. On the basis of current evidence, though, this remains speculative.

Despite this relatively straightforward and impressive alignment, the site nevertheless became controversial. This is because of additional suggestions by Euan MacKie, the archaeologist who had originally excavated at Kintraw and was also responsible for bringing Brainport Bay to the attention of a wider audience. One of MacKie’s ideas was that the Brainport Bay alignment was not imprecise and not just used for ceremonial purposes: it was a precision observing instrument for determining the exact date of the solstice. It is difficult to determine the exact date of the solstice, because the change in the rising position of the sun on days near to the solstice is only minuscule. The horizon notch that the “rifle barrel” stones align upon actually marked the first gleam of sunrise about fifteen days before and after the solstice. The prehistoric observers, according to MacKie, would have determined the solstice by counting the number of days between the two times when the sun rose in the notch and halving the difference.

The problem with this argument is that it cuts both ways. Counting in its favor is the fact that if prehistoric people were trying to determine the solstice, then using a horizon notch displaced from the actual solstitial rising position of the sun and halving the difference would have been a very sensible way to do it, because they were focusing on a place on the horizon where the day-to-day change in the position of sunrise was easily perceptible. Counting against the idea, though, is the fact that any notch within a short distance of the solstice is susceptible to a similar argument, since we do not have direct knowledge about the interval of time around the solstice that would have to be halved. In mountainous country there are lots of notches, and the chances of a fortuitous alignment are very considerable. The upshot is that on the basis of the evidence available to us we can only return one verdict—and fortunately it is one that is allowed in the Scottish legal sys-tem—namely, “not proven.”

MacKie went further still. There are a variety of other signs of human activity in the immediate area around the Brainport Bay alignment, including a 3.4 meters (11 feet) long fallen standing stone and cup markings on rock outcroppings. The whole area, MacKie suggested, formed a “calen-drical complex,” with several precise alignments upon sunrise or sunset on epoch dates in the “megalithic” calendar. But critics have pointed out a number of difficulties, particularly the fact that the alleged calendrical alignments at Brainport Bay are marked in very different ways: across a platform to a pyramid-shaped stone; from a standing stone to a cup mark on a rock; and along the line of a cup-and-groove mark (but not along a similar cup-and-groove mark on another stone). A great many potential alignments of various types exist here, which implies that the calendrical ones could easily have arisen fortuitously.

Next post:

Previous post: