Aastrom Biosciences, Inc. (Stem Cell)

AASTROM IS A regenerative medicine company developing autologous cell products for the repair or regeneration of multiple human tissues, based on its proprietary tissue repair cell (TRC) technology. Aastrom is a private biotechnology company based out of Ann Arbor, Michigan, with a board of directors composed of individuals with broad experience at both large public and private biotech and pharmaceutical companies.

Aastrom’s TRCs are a proprietary mixture of bone marrow-derived adult stem and progenitor cells produced using patented single-pass perfu-sion technology in the Aastrom Replicell system. The clinical procedure begins with the collection of a small sample of bone marrow from the patient’s hip in an outpatient setting. TRCs are then produced in the automated Replicell system over a 12-day period. It has been demonstrated in the laboratory that TRCs are able to develop into different types of tissue lineages in response to inductive signals, including blood, bone, cartilage, adipose, and vascular tubules.

In previous clinical trials, TRCs have been shown to be safe and reliable in regenerating certain normal healthy bone marrow tissues. TRC-based products have been used in over 250 patients and are currently in clinical trials for bone regeneration (osteonecrosis of the femoral head and long bone fractures) and vascular regeneration (critical limb ischemia applications). The company is also developing programs to address cardiac and neural regeneration indications. TRC-based products have received Orphan Drug Designation from the U.S. Food and Drug Administration for use in the treatment of osteonecrosis of the femoral head and the treatment of dilated cardiomyopathy, a severe chronic disease of the heart. In addition to using TRC technology in regulated clinical trials, certain non-U.S. regions allow autologous cell products to be used in patient treatments without further registration or marketing authorization. This enables Aastrom to gain experience through the limited treatment of patients to support the development of its clinical trial strategy. Current clinical programs focus on bone, cardiac, vascular, and neural repair and regeneration.

RESTORE-CLI, a phase lib prospective, controlled, randomized, double-blind, multicenter clinical trial to treat patients suffering from peripheral arterial disease is currently underway. Aastrom has applied its TRC technology to treat critical limb ischemia (CLI) to determine whether vascular repair cells (VRCs) can safely treat patients with peripheral arterial disease-induced critical limb ischemia and reduce the incidence of major amputations in the treated limbs. The primary objective of the clinical trial is to assess the safety of the TRC-based product in CLI patients. Secondary objectives include assessing amputation rates, wound closure and blood flow in the affected limbs, patient quality of life, and the reduction of pain and analgesic use.

Interim results from the first 13 patients treated in a multiarm phase I/II single-center clinical trial to evaluate the safety of VRCs and normal bone marrow cells in the treatment of chronic diabetic foot wounds associated with CLI were presented at the 2nd Congress of the German Society for Stem Cell Research in Wurzburg, Germany. These results reflect treatment experience from four diabetic patients with ischemia-related chronic tissue ulcers who were treated with Aastrom VRCs, a cell mixture derived from the patient’s bone marrow that is processed using TRC technology to generate large numbers of predominantly mes-enchymal stem and early progenitor cells; seven patients who were treated with normal bone marrow cells; and two standard-of-care patients, who received no cells. All patients received standard wound care as described by the American Diabetes Association.

Twelve months posttreatment, all patients in the interim analysis who were treated with VRCs reported no major amputations, no cell-related adverse events, and healing of all open wounds. Of the seven patients treated with normal bone marrow cells, five reported results similar to the VRC-treated patients 12 months posttreatment, one reported similar results to the VRC-treated patients 18 months posttreatment, and one patient received a major amputation. Of the two standard-of-care patients, one patient received a major amputation and one patient experienced no improvement in wound healing after 12 months.

A second oral presentation by Ulrich Noth, M.D., of the Orthopaedic Institute, Konig-Ludwig-Haus, University of Wurzburg, Germany, discussed clinical results involving the first use of Aastrom bone repair cells to treat patients suffering from osteonecrosis of the femoral head. Osteonecrosis of the femoral head involves the death of cells in the bone and marrow within the femur head and in many cases leads to total hip replacement. Dr. Noth presented data from four patients. All patients tolerated the procedure well; have reported a reduction in hip pain with no signs of disease progression, as determined by magnetic resonance imaging and X-ray; and were back to work within six months after treatment. In addition, no cell-related adverse events were observed, and none of these patients have required hip replacement surgery.

These data demonstrate, for the first time, that Aastrom’s cell products may have a beneficial long-term effect in two key indications: critical limb ischemia and osteonecrosis of the femoral head. Although still in their early stages, these results lend substantial scientific support to the clinical development program focused on autologous stem cell products for regenerative medicine.

Next post:

Previous post: